Weighted mixed-effects dose-response models for tables of correlated contrasts

被引:36
|
作者
Orsini, Nicola [1 ]
机构
[1] Karolinska Inst, Dept Global Publ Hlth, Biostat Team, Stockholm, Sweden
关键词
st0638; drmeta; drmeta_graph; drmeta_gof; predict after drmeta; meta-analysis; meta-regression; mixed effects; summarized data; dose-response; GENERALIZED LEAST-SQUARES; TREND ESTIMATION; METAANALYSIS;
D O I
10.1177/1536867X211025798
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Recognizing a dose-response pattern based on heterogeneous tables of contrasts is hard. Specification of a statistical model that can consider the possible dose-response data-generating mechanism, including its variation across studies, is crucial for statistical inference. The aim of this article is to increase the understanding of mixed-effects dose-response models suitable for tables of correlated estimates. One can use the command drmeta with additive (mean difference) and multiplicative (odds ratios, hazard ratios) measures of association. The postestimation command drmeta_graph greatly facilitates the visualization of predicted average and study-specific dose-response relationships. I illustrate applications of the drmeta command with regression splines in experimental and observational data based on nonlinear and random-effects data-generation mechanisms that can be encountered in health-related sciences.
引用
收藏
页码:320 / 347
页数:28
相关论文
共 50 条
  • [1] Identifying Potential Adverse Events Dose-Response Relationships Via Bayesian Indirect and Mixed Treatment Comparison Models
    Fu, Haoda
    Price, Karen L.
    Nilsson, Mary E.
    Ruberg, Stephen J.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2013, 23 (01) : 26 - 42
  • [2] DOSE-RESPONSE MODELS FOR CORRELATED MULTINOMIAL DATA FROM DEVELOPMENTAL TOXICITY STUDIES
    ZHU, Y
    KREWSKI, D
    ROSS, WH
    APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1994, 43 (04): : 583 - 598
  • [3] A Comparison of Procedures to Test for Moderators in Mixed-Effects Meta-Regression Models
    Viechtbauer, Wolfgang
    Lopez-Lopez, Jose Antonio
    Sanchez-Meca, Julio
    Marin-Martinez, Fulgencio
    PSYCHOLOGICAL METHODS, 2015, 20 (03) : 360 - 374
  • [4] Testing in mixed-effects FANOVA models
    Abramovich, Felix
    Angelini, Claudia
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (12) : 4326 - 4348
  • [5] An update on modeling dose-response relationships: Accounting for correlated data structure and heterogeneous error variance in linear and nonlinear mixed models
    Goncalves, M. A. D.
    Bello, N. M.
    Dritz, S. S.
    Tokach, M. D.
    DeRouchey, J. M.
    Woodworth, J. C.
    Goodband, R. D.
    JOURNAL OF ANIMAL SCIENCE, 2016, 94 (05) : 1940 - 1950
  • [6] An update on modeling dose-response relationships: Accounting for correlated data structures and heterogeneous variance in linear and nonlinear mixed models.
    Goncalves, M. A. D.
    Bello, N. M.
    Dritz, S. S.
    Tokach, M. D.
    DeRouchey, J. M.
    Woodworth, J. C.
    Goodband, R. D.
    JOURNAL OF ANIMAL SCIENCE, 2016, 94 : 19 - 19
  • [7] Approximate conditional inference in mixed-effects models with binary data
    Lee, Woojoo
    Shi, Jian Qing
    Lee, Youngjo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (01) : 173 - 184
  • [8] A family of linear mixed-effects models using the generalized Laplace distribution
    Geraci, Marco
    Farcomeni, Alessio
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (09) : 2665 - 2682
  • [9] cosinoRmixedeffects: an R package for mixed-effects cosinor models
    Hou, Ruixue
    Tomalin, Lewis E.
    Suarez-Farinas, Mayte
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [10] A categorical assessment of dose-response dynamics for managing suspended sediment effects on salmonids
    Courtice, Gregory
    Bauer, Bernard
    Cahill, Christopher
    Naser, Gholemreza
    Paul, Andrew
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 807