Nonlinear trajectory generator for motion control systems

被引:0
作者
LoBianco, CG
Tonielli, A
Zanasi, R
机构
来源
PROCEEDINGS OF THE 1996 IEEE IECON - 22ND INTERNATIONAL CONFERENCE ON INDUSTRIAL ELECTRONICS, CONTROL, AND INSTRUMENTATION, VOLS 1-3 | 1996年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper presents a trajectory generator for point-to-point movements in the field of motion control systems. A nonlinear dynamic trajectory generator is proposed. It is a closed loop system which provides the best trajectory compatible with the user selectable constraints on motion state variables (velocity, acceleration, etc.). Constraints on state variables can be fixed or task dependent. They can be changed during system operation without impairing filter stability or introducing overshoot in the trajectory.
引用
收藏
页码:195 / 201
页数:7
相关论文
共 50 条
[31]   Numerically efficient trajectory tracking control of polynomic nonlinear systems [J].
Madhavan, R .
ICRA '99: IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-4, PROCEEDINGS, 1999, :2952-2957
[32]   Sequential virtual motion camouflage method for nonlinear constrained optimal trajectory control [J].
Xu, Yunjun ;
Basset, Gareth .
AUTOMATICA, 2012, 48 (07) :1273-1285
[33]   Correction to: Synthesis of motion control of a nonlinear system along a given spatial trajectory [J].
N. L. Grigorenko .
Computational Mathematics and Modeling, 2023, 34 (1) :85-85
[34]   TRAJECTORY CONTROL IN NONLINEAR NETWORKED SYSTEMS AND ITS APPLICATIONS TO COMPLEX BIOLOGICAL SYSTEMS [J].
Jin, Suoqin ;
Wang, Dingjie ;
Zou, Xiufen .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (01) :629-649
[35]   Trajectory generator design for real ship motion characteristics [J].
Bian, Hongwei ;
Hu, Yaojin ;
Ding, Xian ;
Ma, Heng ;
Wang, Rongying ;
Wen, Zhe .
Zhongguo Guanxing Jishu Xuebao/Journal of Chinese Inertial Technology, 2024, 32 (06) :613-619and629
[36]   Decomposing algorithms for the motion control of nonlinear dynamic systems [J].
Krut'ko, PD ;
Chernous'ko, FL .
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2001, 40 (04) :514-530
[37]   NONLINEAR CONTROL FOR THE NONHOLONOMIC MOTION OF SPACE ROBOT SYSTEMS [J].
NAKAMURA, Y ;
MUKHERJEE, R .
LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1991, 162 :83-105
[38]   Nonlinear dynamic motion optimization and control of multibody systems [J].
Zakhariev, E .
MECHANICS OF STRUCTURES AND MACHINES, 1998, 26 (04) :343-363
[39]   Nonlinear dynamic motion optimization and control of multibody systems [J].
Bulgarian Acad of Sciences, Sofia, Bulgaria .
Mech Struct Mach, 4 (343-363)
[40]   Motion and Trajectory Constraints Control Modeling for Flexible Surgical Robotic Systems [J].
Omisore, Olatunji Mumini ;
Han, Shipeng ;
Al-Handarish, Yousef ;
Du, Wenjing ;
Duan, Wenke ;
Akinyemi, Toluwanimi Oluwadara ;
Wang, Lei .
MICROMACHINES, 2020, 11 (04)