Backlash compensation with filtered prediction in discrete time nonlinear systems by dynamic inversion using neural networks

被引:3
作者
Campos, J [1 ]
Lewis, FL [1 ]
Selmic, R [1 ]
机构
[1] Univ Texas, Automat & Robot Res Inst, Ft Worth, TX 76118 USA
关键词
neural networks; backlash compensation; discrete-time neural; network learning; dynamic inversion by neural networks;
D O I
10.1111/j.1934-6093.2004.tb00212.x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A dynamics inversion compensation scheme is designed for control of nonlinear discrete-time systems with input backlash. This paper extends the dynamic inversion technique to discrete-time systems by using a filtered prediction, and shows how to use a neural network (NN) for inverting the backlash nonlinearity in the feedforward path. The technique provides a general procedure for using NN to determine the dynamics preinverse of an invertible discrete time dynamical system. A discrete-time tuning algorithm is given for the NN weights so that the backlash compensation scheme guarantees bounded tracking and backlash errors, and also bounded parameter estimates. A rigorous proof of stability and performance is given and a simulation example verifies performance. Unlike standard discrete-time adaptive control techniques, no certainty equivalence (CE) or linear-in-the-parameters (LIP) assumptions are needed.
引用
收藏
页码:362 / 375
页数:14
相关论文
共 34 条
[1]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[2]   LOSSLESSNESS, FEEDBACK EQUIVALENCE, AND THE GLOBAL STABILIZATION OF DISCRETE-TIME NONLINEAR-SYSTEMS [J].
BYRNES, CI ;
LIN, W .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (01) :83-98
[3]   Deadzone compensation in discrete time using adaptive fuzzy logic [J].
Campos, J ;
Lewis, FL .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (06) :697-707
[4]  
Grundelius M, 1996, IEEE DECIS CONTR P, P4689, DOI 10.1109/CDC.1996.577616
[5]   ACQUIRING ROBOT SKILLS VIA REINFORCEMENT LEARNING [J].
GULLAPALLI, V ;
FRANKLIN, JA ;
BENBRAHIM, H .
IEEE CONTROL SYSTEMS MAGAZINE, 1994, 14 (01) :13-24
[6]  
Haddad WM, 1997, P AMER CONTR CONF, P2175, DOI 10.1109/ACC.1997.611077
[7]  
Han CW, 1997, P AMER CONTR CONF, P763, DOI 10.1109/ACC.1997.611905
[8]   STOCHASTIC CHOICE OF BASIS FUNCTIONS IN ADAPTIVE FUNCTION APPROXIMATION AND THE FUNCTIONAL-LINK NET [J].
IGELNIK, B ;
PAO, YH .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (06) :1320-1329
[9]  
Jagannathan S, 1998, IEEE DECIS CONTR P, P943, DOI 10.1109/CDC.1998.760816
[10]  
Jagannathan S., 1996, International Journal of Intelligent Control and Systems, V1, P297, DOI 10.1142/S0218796596000192