Explicit exact solutions for a new generalized Hamiltonian amplitude equation with nonlinear terms of any order

被引:7
作者
Chen, Y [1 ]
Li, B
Zhang, HQ
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Peoples R China
[2] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2004年 / 55卷 / 06期
关键词
generalized Hamiltonian amplitude equation; extended tanh method; exact solution; solitary wave solution;
D O I
10.1007/s00033-004-2030-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Making use of a proper transformation and a generalized ansatz, we consider a new generalized Hamiltonian amplitude equation with nonlinear terms of any order, iu(x) + u(tt) + (alpha|u|(p) + beta|u|(2p)) u + deltau(xt) = 0. As a result, many explicit exact solutions, which include kink-shaped soliton solutions, bell-shaped soliton solutions, periodic wave solutions, the combined formal solitary wave solutions and rational solutions, are obtained.
引用
收藏
页码:983 / 993
页数:11
相关论文
共 50 条
[41]   Invariant subspace classification and exact solutions to the generalized nonlinear D-C equation [J].
Liu, Hanze .
APPLIED MATHEMATICS LETTERS, 2018, 83 :164-168
[42]   Bifurcation, exact solutions and nonsmooth behavior of solitary waves in the generalized nonlinear Schrodinger equation [J].
Wang, W ;
Sun, JH ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (10) :3295-3305
[43]   Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation [J].
Liu, Han-Ze ;
Zhang, Li-Xiang .
CHINESE PHYSICS B, 2018, 27 (04)
[44]   New exact solutions of the one-dimensional nonlinear diffusion equation [J].
Rudykh, GA ;
Semenov, EI .
SIBERIAN MATHEMATICAL JOURNAL, 1997, 38 (05) :978-987
[45]   New exact solutions of the one-dimensional nonlinear diffusion equation [J].
G. A. Rudykh ;
È. I. Semënov .
Siberian Mathematical Journal, 1997, 38 :978-987
[46]   New exact solutions of one nonlinear equation in mathematical biology and their properties [J].
Cherniha R.M. .
Ukrainian Mathematical Journal, 2001, 53 (10) :1712-1727
[47]   Travelling waves in microstructure as the exact solutions to the 6th order nonlinear equation [J].
A. Casasso ;
F. Pastrone ;
A. M. Samsonov .
Acoustical Physics, 2010, 56 :871-876
[48]   Painleve analysis and exact solutions of the fourth-order equation for description of nonlinear waves [J].
Kudryashov, Nikolay A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 28 (1-3) :1-9
[49]   Exact solutions to the nonlinear equation in traffic congestion [J].
Cheng Li ;
Damin Cao ;
Qing Du .
Advances in Difference Equations, 2020
[50]   Exact solutions to the nonlinear equation in traffic congestion [J].
Li, Cheng ;
Cao, Damin ;
Du, Qing .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)