Explicit exact solutions for a new generalized Hamiltonian amplitude equation with nonlinear terms of any order

被引:7
作者
Chen, Y [1 ]
Li, B
Zhang, HQ
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Peoples R China
[2] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2004年 / 55卷 / 06期
关键词
generalized Hamiltonian amplitude equation; extended tanh method; exact solution; solitary wave solution;
D O I
10.1007/s00033-004-2030-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Making use of a proper transformation and a generalized ansatz, we consider a new generalized Hamiltonian amplitude equation with nonlinear terms of any order, iu(x) + u(tt) + (alpha|u|(p) + beta|u|(2p)) u + deltau(xt) = 0. As a result, many explicit exact solutions, which include kink-shaped soliton solutions, bell-shaped soliton solutions, periodic wave solutions, the combined formal solitary wave solutions and rational solutions, are obtained.
引用
收藏
页码:983 / 993
页数:11
相关论文
共 7 条
[1]   A note on the homogeneous balance method [J].
Fan, EG ;
Zhang, HQ .
PHYSICS LETTERS A, 1998, 246 (05) :403-406
[2]   A new complex line soliton for the two-dimensional KdV-Burgers equation [J].
Fan, EG ;
Zhang, J ;
Hon, BYC .
PHYSICS LETTERS A, 2001, 291 (06) :376-380
[3]   NEW EXPLICIT EXACT SOLITARY WAVE SOLUTIONS FOR A NEW HAMILTONIAN AMPLITUDE EQUATION [J].
KONG, DX ;
ZHANG, WG .
PHYSICS LETTERS A, 1994, 190 (02) :155-158
[4]   A NEW HAMILTONIAN AMPLITUDE EQUATION GOVERNING MODULATED WAVE INSTABILITIES [J].
WADATI, M ;
SEGUR, H ;
ABLOWITZ, MJ .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1992, 61 (04) :1187-1193
[5]  
Wu Wen-Tsun, 1994, Algorithms and Computation. 5th International Symposium, ISAAC '94 Proceedings, P1
[6]   Symbolic computation and new families of solitary wave solutions to a Hamiltonian amplitude equation [J].
Yan, ZY .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2002, 53 (03) :533-537
[7]   New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water [J].
Yan, ZY ;
Zhang, HQ .
PHYSICS LETTERS A, 2001, 285 (5-6) :355-362