Highly flexible and sensitive temperature sensors based on Ti3C2Tx (MXene) for electronic skin

被引:97
作者
Cao, Zherui [1 ,2 ]
Yang, Yina [1 ,2 ]
Zheng, Yinghui [3 ]
Wu, Wei [4 ]
Xu, Fangfang [1 ]
Wang, Ranran [1 ]
Sun, Jing [1 ]
机构
[1] Chinese Acad Sci, State Key Lab High Performance Ceram & Superne Mi, Shanghai Inst Ceram, 1295 Ding Xi Rd, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, 19 Yuquan Rd, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, State Key Lab High Field Laser Phys, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
[4] Thermo Fisher Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
PRESSURE; TRANSPARENT; ARRAY; FILM; TRANSISTORS; PERCEPTION; HUMIDITY; TACTILE; THIN;
D O I
10.1039/c9ta09225k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electronic skin (e-skin) has been attracting great research interest and effort due to its potential applications in wearable health monitoring devices, smart prosthetics, humanoid robots and so on. Temperature is an important parameter for e-skin to perceive surroundings and people. However, little research has been carried out in the field of flexible temperature sensing and current temperature sensors still face many challenges in practical applications, such as high sensing performance, facile preparation, and differentiating from other stimuli. Herein, we develop a facile fabrication strategy for Ti3C2Tx based temperature sensors. As the sensing units, Ti3C2Tx nanoparticles and lamellae can be obtained simultaneously through controlling the fabrication conditions. These temperature sensors exhibit tunable sensing performances and a desirable combination of a high sensitivity (up to 986 degrees C-1) and a wide working range (140 degrees C). Due to their high sensitivity, these sensors can also be used as e-skin for proximity detection and illumination detection from ultraviolet to infrared light. For application demonstration, a 4 x 4 array of the sensors was fabricated for temperature mapping, indicating their great potential for monitoring approaching objects and temperature variations.
引用
收藏
页码:25314 / 25323
页数:10
相关论文
共 60 条
[1]   The Sensory Neurons of Touch [J].
Abraira, Victoria E. ;
Ginty, David D. .
NEURON, 2013, 79 (04) :618-639
[2]   Wetness perception across body sites [J].
Ackerley, Rochelle ;
Olausson, Hakan ;
Wessberg, Johan ;
McGlone, Francis .
NEUROSCIENCE LETTERS, 2012, 522 (01) :73-77
[3]   Highly Sensitive Temperature Sensor: Ligand-Treated Ag Nanocrystal Thin Films on PDMS with Thermal Expansion Strategy [J].
Bang, Junsung ;
Lee, Woo Seok ;
Park, Byeonghak ;
Joh, Hyungmok ;
Woo, Ho Kun ;
Jeon, Sanghyun ;
Ahn, Junhyuk ;
Jeong, Chanho ;
Kim, Toe-il ;
Oh, Soong Ju .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (32)
[4]   25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters [J].
Bauer, Siegfried ;
Bauer-Gogonea, Simona ;
Graz, Ingrid ;
Kaltenbrunner, Martin ;
Keplinger, Christoph ;
Schwoediauer, Reinhard .
ADVANCED MATERIALS, 2014, 26 (01) :149-162
[5]   Electronic Muscles and Skins: A Review of Soft Sensors and Actuators [J].
Chen, Dustin ;
Pei, Qibing .
CHEMICAL REVIEWS, 2017, 117 (17) :11239-11268
[6]   Breathable and Stretchable Temperature Sensors Inspired by Skin [J].
Chen, Ying ;
Lu, Bingwei ;
Chen, Yihao ;
Feng, Xue .
SCIENTIFIC REPORTS, 2015, 5
[7]   Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array [J].
Choong, Chwee-Lin ;
Shim, Mun-Bo ;
Lee, Byoung-Sun ;
Jeon, Sanghun ;
Ko, Dong-Su ;
Kang, Tae-Hyung ;
Bae, Jihyun ;
Lee, Sung Hoon ;
Byun, Kyung-Eun ;
Im, Jungkyun ;
Jeong, Yong Jin ;
Park, Chan Eon ;
Park, Jong-Jin ;
Chung, U-In .
ADVANCED MATERIALS, 2014, 26 (21) :3451-3458
[8]   Multilayer Graphene-GeSn Quantum Well Heterostructure SWIR Light Source [J].
Cong, Hui ;
Yang, Fan ;
Xue, Chunlai ;
Yu, Kai ;
Zhou, Lin ;
Wang, Nan ;
Cheng, Buwen ;
Wang, Qiming .
SMALL, 2018, 14 (17)
[9]   Temperature sensor realized by inkjet printing process on flexible substrate [J].
Dankoco, M. D. ;
Tesfay, G. Y. ;
Benevent, E. ;
Bendahan, M. .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 205 :1-5
[10]   Skin-Inspired Multifunctional Autonomic-Intrinsic Conductive Self-Healing Hydrogels with Pressure Sensitivity, Stretchability, and 3D Printability [J].
Darabi, Mohammad Ali ;
Khosrozadeh, Ali ;
Mbeleck, Rene ;
Liu, Yuqing ;
Chang, Qiang ;
Jiang, Junzi ;
Cai, Jun ;
Wang, Quan ;
Luo, Gaoxing ;
Xing, Malcolm .
ADVANCED MATERIALS, 2017, 29 (31)