On the structure of linear and cyclic codes over a finite chain ring

被引:284
作者
Norton, GH [1 ]
Salagean, A
机构
[1] Univ Bristol, Commun Res Ctr, Algebra Coding Res Grp, Bristol BS8 1UB, Avon, England
[2] Nottingham Trent Univ, Dept Math, Nottingham NG11 8NS, England
关键词
finite chain ring; Galois ring; linear code; cyclic code;
D O I
10.1007/PL00012382
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We generalise structure theorems of Calderbank and Sloane for linear and cyclic codes over Z(pa) to a finite chain ring. Our results are more detailed and do not use non-trivial results from Commutative Algebra.
引用
收藏
页码:489 / 506
页数:18
相关论文
共 13 条
[1]  
BERLEKAMP ER, 1968, SERIES SYSTEMS SCI
[2]  
Calderbank A. R., 1995, Designs, Codes and Cryptography, V6, P21, DOI 10.1007/BF01390768
[3]   Cyclic codes over Z(4), locator polynomials, and Newton's identities [J].
Calderbank, AR ;
McGuire, G ;
Kumar, V ;
Helleseth, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (01) :217-226
[4]   SELF-DUAL CODES OVER THE INTEGERS MODULO-4 [J].
CONWAY, JH ;
SLOANE, NJA .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 62 (01) :30-45
[5]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[6]  
Kanwar P., 1997, Finite Fields and their Applications, V3, P334, DOI 10.1006/ffta.1997.0189
[7]  
MAXWILLIAMS FJ, 1977, THEORY ERROR CORRECT
[8]  
McDonald B.R., 1974, Pure and Applied Mathematics
[9]  
NORTON GH, 2000, IN PRESS IEEE T INFO
[10]  
NORTON GH, 2000, IN PRESS CODES CRYPT