On the structure of linear and cyclic codes over a finite chain ring

被引:276
作者
Norton, GH [1 ]
Salagean, A
机构
[1] Univ Bristol, Commun Res Ctr, Algebra Coding Res Grp, Bristol BS8 1UB, Avon, England
[2] Nottingham Trent Univ, Dept Math, Nottingham NG11 8NS, England
关键词
finite chain ring; Galois ring; linear code; cyclic code;
D O I
10.1007/PL00012382
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We generalise structure theorems of Calderbank and Sloane for linear and cyclic codes over Z(pa) to a finite chain ring. Our results are more detailed and do not use non-trivial results from Commutative Algebra.
引用
收藏
页码:489 / 506
页数:18
相关论文
共 13 条
  • [1] BERLEKAMP ER, 1968, SERIES SYSTEMS SCI
  • [2] Calderbank A. R., 1995, Designs, Codes and Cryptography, V6, P21, DOI 10.1007/BF01390768
  • [3] Cyclic codes over Z(4), locator polynomials, and Newton's identities
    Calderbank, AR
    McGuire, G
    Kumar, V
    Helleseth, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (01) : 217 - 226
  • [4] SELF-DUAL CODES OVER THE INTEGERS MODULO-4
    CONWAY, JH
    SLOANE, NJA
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 62 (01) : 30 - 45
  • [5] THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES
    HAMMONS, AR
    KUMAR, PV
    CALDERBANK, AR
    SLOANE, NJA
    SOLE, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) : 301 - 319
  • [6] Kanwar P., 1997, Finite Fields and their Applications, V3, P334, DOI 10.1006/ffta.1997.0189
  • [7] MAXWILLIAMS FJ, 1977, THEORY ERROR CORRECT
  • [8] McDonald B.R., 1974, Pure and Applied Mathematics
  • [9] NORTON GH, 2000, IN PRESS IEEE T INFO
  • [10] NORTON GH, 2000, IN PRESS CODES CRYPT