Combined radiomics-clinical model to predict malignancy of vertebral compression fractures on CT

被引:47
作者
Chee, Choong Guen [1 ,2 ]
Yoon, Min A. [1 ,2 ]
Kim, Kyung Won [1 ,2 ]
Ko, Yusun [3 ]
Ham, Su Jung [1 ,2 ]
Cho, Young Chul [1 ,2 ]
Park, Bumwoo [4 ]
Chung, Hye Won [1 ,2 ]
机构
[1] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 88 Olymp Ro 43 Gil, Seoul 05505, South Korea
[2] Univ Ulsan, Coll Med, Asan Med Ctr, Res Inst Radiol, 88 Olymp Ro 43 Gil, Seoul 05505, South Korea
[3] Univ Ulsan, Coll Med, Biomed Res Ctr, Asan Inst Life Sci,Asan Med Ctr, 88 Olymp Ro 43 Gil, Seoul 05505, South Korea
[4] Asan Med Ctr, Asan Inst Life Sci, Hlth Innovat Big Data Ctr, 88 Olymp Ro 43 Gil, Seoul 05505, South Korea
基金
新加坡国家研究基金会;
关键词
Multidetector computed tomography; Spine; Fractures; compression;
D O I
10.1007/s00330-021-07832-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives To develop and validate a combined radiomics-clinical model to predict malignancy of vertebral compression fractures on CT. Methods One hundred sixty-five patients with vertebral compression fractures were allocated to training (n = 110 [62 acute benign and 48 malignant fractures]) and validation (n = 55 [30 acute benign and 25 malignant fractures]) cohorts. Radiomics features (n = 144) were extracted from non-contrast-enhanced CT images. Radiomics score was constructed by applying least absolute shrinkage and selection operator regression to reproducible features. A combined radiomics-clinical model was constructed by integrating significant clinical parameters with radiomics score using multivariate logistic regression analysis. Model performance was quantified in terms of discrimination and calibration. The model was internally validated on the independent data set. Results The combined radiomics-clinical model, composed of two significant clinical predictors (age and history of malignancy) and the radiomics score, showed good calibration (Hosmer-Lemeshow test, p > 0.05) and discrimination in both training (AUC, 0.970) and validation (AUC, 0.948) cohorts. Discrimination performance of the combined model was higher than that of either the radiomics score (AUC, 0.941 in training cohort and 0.852 in validation cohort) or the clinical predictor model (AUC, 0.924 in training cohort and 0.849 in validation cohort). The model stratified patients into groups with low and high risk of malignant fracture with an accuracy of 98.2% in the training cohort and 90.9% in the validation cohort. Conclusions The combined radiomics-clinical model integrating clinical parameters with radiomics score could predict malignancy in vertebral compression fractures on CT with high discriminatory ability.
引用
收藏
页码:6825 / 6834
页数:10
相关论文
共 43 条
[1]   Prognostic Value of Computed Tomography Texture Features in Non-Small Cell Lung Cancers Treated With Definitive Concomitant Chemoradiotherapy [J].
Ahn, Su Yeon ;
Park, Chang Min ;
Park, Sang Joon ;
Kim, Hak Jae ;
Song, Changhoon ;
Lee, Sang Min ;
McAdams, Holman Page ;
Goo, Jin Mo .
INVESTIGATIVE RADIOLOGY, 2015, 50 (10) :719-725
[2]   CAN WE DISTINGUISH BETWEEN BENIGN VERSUS MALIGNANT COMPRESSION FRACTURES OF THE SPINE BY MAGNETIC-RESONANCE-IMAGING [J].
AN, HS ;
ANDRESHAK, TG ;
NGUYEN, C ;
WILLIAMS, A ;
DANIELS, D .
SPINE, 1995, 20 (16) :1776-1782
[3]   Acute osteoporotic and neoplastic vertebral compression fractures:: Fluid sign at MR imaging [J].
Baur, A ;
Stäbler, A ;
Arbogast, S ;
Duerr, HR ;
Bartl, R ;
Reiser, M .
RADIOLOGY, 2002, 225 (03) :730-735
[4]   Osteoclast differentiation and activation [J].
Boyle, WJ ;
Simonet, WS ;
Lacey, DL .
NATURE, 2003, 423 (6937) :337-342
[5]   Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025 [J].
Burge, Russel ;
Dawson-Hughes, Bess ;
Solomon, Daniel H. ;
Wong, John B. ;
King, Alison ;
Tosteson, Anna .
JOURNAL OF BONE AND MINERAL RESEARCH, 2007, 22 (03) :465-475
[6]   Texture analysis of vertebral bone marrow using chemical shift encoding-based water-fat MRI: a feasibility study [J].
Burian, E. ;
Subburaj, K. ;
Mookiah, M. R. K. ;
Rohrmeier, A. ;
Hedderich, D. M. ;
Dieckmeyer, M. ;
Diefenbach, M. N. ;
Ruschke, S. ;
Rummeny, E. J. ;
Zimmer, C. ;
Kirschke, J. S. ;
Karampinos, D. C. ;
Baum, T. .
OSTEOPOROSIS INTERNATIONAL, 2019, 30 (06) :1265-1274
[7]   Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics [J].
Carre, Alexandre ;
Klausner, Guillaume ;
Edjlali, Myriam ;
Lerousseau, Marvin ;
Briend-Diop, Jade ;
Sun, Roger ;
Ammari, Samy ;
Reuze, Sylvain ;
Andres, Emilie Alvarez ;
Estienne, Theo ;
Niyoteka, Stephane ;
Battistella, Enzo ;
Vakalopoulou, Maria ;
Dhermain, Frederic ;
Paragios, Nikos ;
Deutsch, Eric ;
Oppenheim, Catherine ;
Pallud, Johan ;
Robert, Charlotte .
SCIENTIFIC REPORTS, 2020, 10 (01)
[8]  
Choi SH, 2020, ASIAN SPINE J, V14, P220, DOI [10.31616/asj.2019.0051, 10.31616/a42019.0051]
[9]   Acute vertebral collapse due to osteoporosis or malignancy: Appearance on unenhanced and gadolinium-enhanced MR images [J].
Cuenod, CA ;
Laredo, JD ;
Chevret, S ;
Hamze, B ;
Naouri, JF ;
Chapaux, X ;
Bondeville, JM ;
Tubiana, JM .
RADIOLOGY, 1996, 199 (02) :541-549
[10]   Osteoporosis and Cancer [J].
Drake, Matthew T. .
CURRENT OSTEOPOROSIS REPORTS, 2013, 11 (03) :163-170