1.37 kV/12 A NiO/β-Ga2O3 Heterojunction Diode With Nanosecond Reverse Recovery and Rugged Surge-Current Capability

被引:111
作者
Gong, Hehe [1 ]
Zhou, Feng [1 ]
Xu, Weizong [1 ]
Yu, Xinxin [1 ]
Xu, Yang [1 ]
Yang, Yi [1 ]
Ren, Fang-fang [1 ]
Gu, Shulin [1 ]
Zheng, Youdou [1 ]
Zhang, Rong [1 ]
Lu, Hai [1 ]
Ye, Jiandong [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210023, Peoples R China
关键词
Fast reverse recovery; Gallium oxide (Ga2O3); NiO; p-n heterojunction diode (HJD); surge current;
D O I
10.1109/TPEL.2021.3082640
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ga2O3 power diodes with high voltage/current ratings, superior dynamic performance, robust reliability, and potentially easy-to-implement are a vital milestone on the Ga2O3 power electronics roadmap. In this letter, a better tradeoff between fast reverse-recovery and rugged surge-current capability has been demonstrated in NiO/Ga2O3 p-n heterojunction diodes (HJDs). With the double-layered p-NiO design, the HJD exhibits superior electrostatic performances, including a high breakdown voltage of 1.37 kV, a forward current of 12.0 A with a low on-state resistance of 0.26 Omega, yielding a static Baliga's figure of merit (FOM) of 0.72 GW/cm(2). Meanwhile, the fast switching performance has been observed with a short reverse recovery time in nanosecond timescale (11 ns) under extreme switching conditions of di/dt up to 500 A/mu s. In particular, for a 9-mm(2) HJD, a large surge current of 45 A has also been obtained in a 10-ms surge transient, thanks to the conductivity modulation effect. These results are comparable with those of the advanced commercial SiC SBDs and have significantly outperformed the past reported Ga2O3 HJDs, fulfilling the enormous potential of Ga2O3 in power applications.
引用
收藏
页码:12213 / 12217
页数:5
相关论文
共 23 条
[1]   A 1.86-kV double-layered NiO/β-Ga2O3 vertical p-n heterojunction diode [J].
Gong, H. H. ;
Chen, X. H. ;
Xu, Y. ;
Ren, F-F ;
Gu, S. L. ;
Ye, J. D. .
APPLIED PHYSICS LETTERS, 2020, 117 (02)
[2]   Band Alignment and Interface Recombination in NiO/β-Ga2O3 Type-II p-n Heterojunctions [J].
Gong, Hehe ;
Chen, Xuanhu ;
Xu, Yang ;
Chen, Yanting ;
Ren, Fangfang ;
Liu, Bin ;
Gu, Shulin ;
Zhang, Rong ;
Ye, Jiandong .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (08) :3341-3347
[3]  
Han SW, 2019, PROC INT SYMP POWER, P63, DOI [10.1109/ispsd.2019.8757671, 10.1109/ISPSD.2019.8757671]
[4]   Current-Collapse-Free and Fast Reverse Recovery Performance in Vertical GaN-on-GaN Schottky Barrier Diode [J].
Han, Shaowen ;
Yang, Shu ;
Li, Rui ;
Wu, Xinke ;
Sheng, Kuang .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2019, 34 (06) :5012-5018
[5]   Schottky Barrier Rectifier Based on (100) β-Ga2O3 and its DC and AC Characteristics [J].
He, Qiming ;
Mu, Wenxiang ;
Fu, Bo ;
Jia, Zhitai ;
Long, Shibing ;
Yu, Zhaoan ;
Yao, Zhihong ;
Wang, Wei ;
Dong, Hang ;
Qin, Yuan ;
Jian, Guangzhong ;
Zhang, Ying ;
Xue, Huiwen ;
Lv, Hangbing ;
Liu, Qi ;
Tang, Minghua ;
Tao, Xutang ;
Liu, Ming .
IEEE ELECTRON DEVICE LETTERS, 2018, 39 (04) :556-559
[6]  
Hu YC, 2020, PROC INT SYMP POWER, P178, DOI 10.1109/ISPSD46842.2020.9170114
[7]   Demonstration of Large-Size Vertical Ga2O3 Schottky Barrier Diodes [J].
Ji, Mihee ;
Taylor, Neil R. ;
Kravchenko, Ivan ;
Joshi, Pooran ;
Aytug, Tolga ;
Cao, Lei R. ;
Paranthaman, M. Parans .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (01) :41-44
[8]   Temperature effects on the ruggedness of SiC Schottky diodes under surge current [J].
Leon, J. ;
Perpina, X. ;
Banu, V. ;
Montserrat, J. ;
Berthou, M. ;
Vellvehi, M. ;
Godignon, P. ;
Jorda, X. .
MICROELECTRONICS RELIABILITY, 2014, 54 (9-10) :2207-2212
[9]   Field-Plated Ga2O3 Trench Schottky Barrier Diodes With a BV2/Ron,sp of up to 0.95 GW/cm2 [J].
Li, Wenshen ;
Nomoto, Kazuki ;
Hu, Zongyang ;
Jena, Debdeep ;
Xing, Huili Grace .
IEEE ELECTRON DEVICE LETTERS, 2020, 41 (01) :107-110
[10]   1-kV Sputtered p-NiO/n-Ga2O3 Heterojunction Diodes With an Ultra-Low Leakage Current Below 1 μA/cm2 [J].
Lu, Xing ;
Zhou, Xianda ;
Jiang, Huaxing ;
Ng, Kar Wei ;
Chen, Zimin ;
Pei, Yanli ;
Lau, Kei May ;
Wang, Gang .
IEEE ELECTRON DEVICE LETTERS, 2020, 41 (03) :449-452