Effect of Mg doping on structural, morphological, optical and thermal properties of ZnO nanoparticles

被引:95
作者
Sagheer, Riffat [1 ]
Khalil, Momina [1 ]
Abbas, Vaneeza [1 ]
Kayani, Zohra Nazir [1 ]
Tariq, Unza [1 ]
Ashraf, Faiza [1 ]
机构
[1] Lahore Coll Women Univ, Dept Phys, Lahore 54000, Pakistan
来源
OPTIK | 2020年 / 200卷
关键词
Mg-doped ZnO nanoparticles; Co-precipitation; Structural properties; Nanowires; Optical band gap energy; DOPED ZNO; ELECTRICAL-PROPERTIES; PHOTOCATALYTIC DEGRADATION; ANTIBACTERIAL ACTIVITY; MAGNETIC-PROPERTIES; PHOTOLUMINESCENCE; PURE; LA; CONDUCTIVITY; FE;
D O I
10.1016/j.ijleo.2019.163428
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Doping of group II elements in ZnO is an efficient way to enhance the optical properties of ZnO nanoparticles. For this purpose, Zn1-xMgxO nanoparticles (x = 0, 0.02, 0.04, 0.06, 0.08 and 0.1) are synthesized using co-precipitation technique. Effect of 'Mg' doping on structural, morphological, optical and thermal properties of ZnO nanoparticles is investigated. XRD results verify that synthesized nanoparticles are poly-crystalline with typical hexagonal wurtzite structure and possess no other impurity or dopant phases. Crystallite size is increased with the increase in 'Mg' content. SEM analysis reveals that polyhedral grains are aggregated with the increase in doping concentration of Mg. For the highest dopant concentration, surface morphology is entirely changed with the formation of nanowires. Optical band gap energy of Mg-doped ZnO nanoparticles is greater than that of pristine ZnO nanoparticles. The blue shift in band gap is observed with Mg content x <= 0.04, followed by red shift for higher Mg content. The decrease in phase transition and increase in decomposition temperature for Mg-doped ZnO nanoparticles suggest their thermal stability. Tailoring of band gap makes ZnO nanoparticles a promising material for photocatalysis, optoelectronic and display devices.
引用
收藏
页数:10
相关论文
共 50 条
[1]  
Agarwal H., 2017, RESOUR TECHNOL, DOI 10.1016/j.reffit.2017.03.002
[2]   Band gap engineering and enhanced photoluminescence of Mg doped ZnO nanoparticles synthesized by wet chemical route [J].
Arshad, Mohd ;
Ansari, Mohd Meenhaz ;
Ahmed, Arham S. ;
Tripathi, Pushpendra ;
Ashraf, S. S. Z. ;
Naqvi, A. H. ;
Azam, Ameer .
JOURNAL OF LUMINESCENCE, 2015, 161 :275-280
[3]   Preparation, growth and characterization of nonvacuum Cu-doped ZnO thin films [J].
Asikuzun, E. ;
Ozturk, O. ;
Arda, L. ;
Terzioglu, C. .
JOURNAL OF MOLECULAR STRUCTURE, 2018, 1165 :1-7
[4]   Synthesis of Cd doped ZnO/CNT nanocomposite by using microwave method: Photocatalytic behavior, adsorption and kinetic study [J].
Azqhandi, Mohammad Hossein Ahmadi ;
Vasheghani, B. F. ;
Rajabi, F. H. ;
Keramati, M. .
RESULTS IN PHYSICS, 2017, 7 :1106-1114
[5]  
Bhatia Deepak, 2016, Sensing and Bio-Sensing Research, V9, P45, DOI 10.1016/j.sbsr.2016.05.008
[6]   Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis [J].
Bindu, P. ;
Thomas, Sabu .
JOURNAL OF THEORETICAL AND APPLIED PHYSICS, 2014, 8 (04) :123-134
[7]   Synthesis and characterization of pure ZnO and La-doped ZnO (Zn0.98La0.02O) films via novel sol-gel screen-printing method [J].
Chaudhary, Preeti ;
Singh, Priti ;
Kumar, Vipin .
OPTIK, 2018, 158 :376-381
[8]   The crystallization and physical properties of Al-doped ZnO nanoparticles [J].
Chen, K. J. ;
Fang, T. H. ;
Hung, F. Y. ;
Ji, L. W. ;
Chang, S. J. ;
Young, S. J. ;
Hsiao, Y. J. .
APPLIED SURFACE SCIENCE, 2008, 254 (18) :5791-5795
[9]   Synthesis, structural, optical and dielectric properties of transition metal doped ZnMnO nanoparticles by sol-gel combustion technique [J].
Dar, M. A. ;
Varshney, Dinesh .
SUPERLATTICES AND MICROSTRUCTURES, 2018, 114 :340-354
[10]   Optical and magnetic properties of Ni-doped ZnO nanoparticles [J].
Fabbiyola, S. ;
Sailaja, V. ;
Kennedy, L. John ;
Bououdina, M. ;
Vijaya, J. Judith .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 694 :522-531