Divergence Based Online Learning in Vector Quantization

被引:0
|
作者
Villmann, Thomas [1 ]
Haase, Sven [1 ]
Schleif, Frank-Michael [2 ]
Hammer, Barbara [2 ]
机构
[1] Univ Appl Sci Mittweida, Dept Math Nat Sci Informat, Mittweida, Germany
[2] Tech Univ Clausthal, Inst Comp Sci, Zellerfeld, Germany
来源
ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I | 2010年 / 6113卷
关键词
vector quantization; divergence based learning; information theory; MAPS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose the utilization of divergences in gradient descent learning of supervised and unsupervised vector quantization as an alternative for the squared Euclidean distance. The approach is based on the determination of the Frechet-derivatives for the divergences, wich can be immediately plugged into the online-learning rules.
引用
收藏
页码:479 / +
页数:3
相关论文
共 50 条
  • [31] Window-Based Example Selection in Learning Vector Quantization
    Witoelar, A. W.
    Ghosh, A.
    de Vries, J. J. G.
    Hammer, B.
    Biehl, M.
    NEURAL COMPUTATION, 2010, 22 (11) : 2924 - 2961
  • [32] VECTOR QUANTIZATION USING SURVIVAL CAUCHY-SCHWARTZ DIVERGENCE
    Guo, Lei
    Qu, Hua
    Zhao, Jihong
    Chen, Badong
    2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2014,
  • [33] Improving Dynamic Learning Vector Quantization
    De Stefano, Claudio
    D'Elia, Ciro
    Marcelli, Angelo
    di Freca, Alessandra Scotto
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 804 - +
  • [34] Distance Learning in Discriminative Vector Quantization
    Schneider, Petra
    Biehl, Michael
    Hammer, Barbara
    NEURAL COMPUTATION, 2009, 21 (10) : 2942 - 2969
  • [35] Differential privacy for learning vector quantization
    Brinkrolf, Johannes
    Goepfert, Christina
    Hammer, Barbara
    NEUROCOMPUTING, 2019, 342 : 125 - 136
  • [36] The improvements of the learning vector quantization method
    Yokoo, T
    Nagasaka, K
    ICONIP'98: THE FIFTH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING JOINTLY WITH JNNS'98: THE 1998 ANNUAL CONFERENCE OF THE JAPANESE NEURAL NETWORK SOCIETY - PROCEEDINGS, VOLS 1-3, 1998, : 542 - 545
  • [37] Generalized relevance learning vector quantization
    Hammer, B
    Villmann, T
    NEURAL NETWORKS, 2002, 15 (8-9) : 1059 - 1068
  • [38] Learning vector quantization for multimodal data
    Hammer, B
    Strickert, M
    Villmann, T
    ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 370 - 376
  • [39] Robust vector quantization by competitive learning
    Buhmann, JM
    Hofmann, T
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 139 - 142
  • [40] sklvq: Scikit Learning Vector Quantization
    van Veen, Rick
    Biehl, Michael
    De Vries, Gert-Jan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22