Steep slope carbon nanotube tunneling field-effect transistor

被引:14
|
作者
Pang, Chin-Sheng [1 ,2 ]
Han, Shu-Jen [3 ]
Chen, Zhihong [1 ,2 ]
机构
[1] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Elect & Comp Engn, W Lafayette, IN 47907 USA
[3] HFC Semicond Corp, 17 Comp Dr West, Albany, NY 12205 USA
关键词
MOSFETs; Tunneling field-effect transistor (TFET); Thin gate dielectric; Carbon nanotube (CNT); PERFORMANCE; MOSFET; BULK;
D O I
10.1016/j.carbon.2021.03.068
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tunneling field-effect transistors (TFETs) have emerged as a potential candidate to outperform conventional metal-oxide-semiconductor FETs at low voltages, since their operation mechanism can overcome the fundamental subthreshold swing (SS) limit of 60 mV/decade at room temperature. We report carbon nanotube (CNT) based TFETs with abrupt p-i-n tunneling junctions controlled by electrostatic doping. Minimum SS (SSmin) of similar to 41 mV/dec is observed with nearly no temperature dependence, as clear evidence of the TFET operation. We further investigate devices using CNTs with smaller bandgaps, reporting a record high band-to-band tunneling (BTBT) current of similar to 100 nA for a single CNT. Non-linear output characteristics are observed as expected for devices operating outside of the quantum capacitance limit (QCL). Overall, electrostatically doped CNT TFETs shine a promising path for low-power electronic applications. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:237 / 243
页数:7
相关论文
共 50 条
  • [31] The use of a Gaussian doping distribution in the channel region to improve the performance of a tunneling carbon nanotube field-effect transistor
    Ali Naderi
    Maryam Ghodrati
    Sobhi Baniardalani
    Journal of Computational Electronics, 2020, 19 : 283 - 290
  • [32] Schottky-barrier carbon nanotube field-effect transistor modeling
    Hazeghi, Arash
    Krishnamohan, Tejas
    Wong, H. -S. Philip
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (03) : 439 - 445
  • [33] Selective Protein Sensing Using a Carbon Nanotube Field-Effect Transistor
    Abe, Masuhiro
    Murata, Kastuyuki
    Ataka, Tatsuaki
    Ifuku, Yasuo
    Matsumoto, Kazuhiko
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (03) : 1947 - 1950
  • [34] Electroluminescence from an Electrostatically Doped Carbon Nanotube Field-Effect Transistor
    Hughes, M. A.
    Ohno, Y.
    Mizutani, T.
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2014, 6 (10) : 881 - 886
  • [35] Polymer electrolyte-gated carbon nanotube field-effect transistor
    Lu, CG
    Fu, Q
    Huang, SM
    Liu, J
    NANO LETTERS, 2004, 4 (04) : 623 - 627
  • [36] Ultrasensitive detection of organophosphate insecticides by carbon nanotube field-effect transistor
    Ishii, Atsushi
    Takeda, Seiji
    Hattori, Satoshi
    Sueoka, Kazuhisa
    Mukasa, Koichi
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2008, 313 : 456 - 460
  • [37] Circuits implementations using carbon nanotube field-effect transistor nanotechnology
    Maqbool, Mehwish
    Sharma, Vijay Kumar
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (03):
  • [38] Origins of Charge Noise in Carbon Nanotube Field-Effect Transistor Biosensors
    Sharf, Tal
    Kevek, Joshua W.
    DeBorde, Tristan
    Wardini, Jenna L.
    Minot, Ethan D.
    NANO LETTERS, 2012, 12 (12) : 6380 - 6384
  • [39] A Physical Design Tool for Carbon Nanotube Field-Effect Transistor Circuits
    Huang, Jiale
    Zhu, Minhao
    Yang, Shengqi
    Gupta, Pallav
    Zhang, Wei
    Rubin, Steven M.
    Garreton, Gilda
    He, Jin
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2012, 8 (03)
  • [40] Detecting individual electrons using a carbon nanotube field-effect transistor
    Gruneis, Andreas
    Esplandiu, Maria J.
    Garcia-Sanchez, Daniel
    Bachtold, Adrian
    NANO LETTERS, 2007, 7 (12) : 3766 - 3769