Mechanism of Gas Separation through Amorphous Silicon Oxycarbide Membranes

被引:19
作者
Prasad, Ravi Mohan [1 ,2 ]
Juettke, Yvonne [4 ]
Richter, Hannes [4 ]
Voigt, Ingolf [4 ]
Riedel, Ralf [1 ]
Gurlo, Aleksander [1 ,3 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Mat & Geowissensch, Fachgebiet Disperse Feststoffe, Jovanka Bontschits Str 2, D-64287 Darmstadt, Germany
[2] Indian Inst Technol Ropar, Sch Mech Mat & Energy Engn, Nangal Rd, Rupnagar 140001, Punjab, India
[3] Tech Univ Berlin, Inst Werkstoffwissensch & Technol, Fachgebiet Keram Werkstoffe, Hardenbergstr 40, D-10623 Berlin, Germany
[4] Fraunhofer Inst Ceram Technol & Syst, Michael Faraday Str 1, D-07629 Hermsdorf, Germany
关键词
HYDROGEN SEPARATION; HYDROTHERMAL STABILITY; CERAMIC MEMBRANES; MICROPOROUS SILICA; ZEOLITE MEMBRANES; POLYMER MEMBRANES; CARBIDE MEMBRANES; CARBON MEMBRANES; ORGANIC-DYES; PURIFICATION;
D O I
10.1002/adem.201500380
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Polymer-derived amorphous silicon oxycarbide (SiOC) ceramics are designed for hydrogen separation at high temperatures. To form amorphous SiOC top-coating with the thickness of about 300 nm, tubular porous gamma-Al2O3/a-Al2O3 substrates with gradient porosity are threefold coated by vinyl-functionalized polysiloxane and pyrolyzed at 700 degrees C under argon. N-2-physisorption measurement confirms formation of microporous material with a specific surface area of about 400 m(2) g(-1). Single gas permeance characterization of the SiOC membrane at 300 degrees C reveals H-2/CO2 and H-2/SF6 ideal permselectivities of about 10 and 320, respectively. The experimental gas permeance data are modeled using solid-state diffusion (for He and H-2) and gas translational diffusion (for CO2 and SF6) mechanisms.
引用
收藏
页码:721 / 727
页数:7
相关论文
共 53 条
  • [1] Hydrogen membrane separation techniques
    Adhikari, S
    Fernando, S
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (03) : 875 - 881
  • [2] [Anonymous], 2008, Hydrogen as a Future Energy Carrier
  • [3] An economic survey of hydrogen production from conventional and alternative energy sources
    Bartels, Jeffrey R.
    Pate, Michael B.
    Olson, Norman K.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (16) : 8371 - 8384
  • [4] Hydrothermal stability of microporous silica and niobia-silica membranes
    Boffa, V.
    Blank, D. H. A.
    ten Elshof, J. E.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2008, 319 (1-2) : 256 - 263
  • [5] High-temperature membranes in power generation with CO2 capture
    Bredesen, R
    Jordal, K
    Bolland, O
    [J]. CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2004, 43 (09) : 1129 - 1158
  • [6] Adsorption of gases in multimolecular layers
    Brunauer, S
    Emmett, PH
    Teller, E
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 : 309 - 319
  • [7] Burggraaf A.J., 1996, Fundamentals of inorganic membrane science and technology, V4
  • [8] Preparation and reactive applications of nanoporous silicon carbide membranes
    Ciora, RJ
    Fayyaz, B
    Liu, PKT
    Suwanmethanond, V
    Mallada, R
    Sahimi, M
    Tsotsis, TT
    [J]. CHEMICAL ENGINEERING SCIENCE, 2004, 59 (22-23) : 4957 - 4965
  • [9] Colombo P., 2010, POLYM DERIVED CERAMI
  • [10] Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics
    Colombo, Paolo
    Mera, Gabriela
    Riedel, Ralf
    Soraru, Gian Domenico
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2010, 93 (07) : 1805 - 1837