Dynamic Resource Allocation in Systems-of-Systems Using a Heuristic-Based Interpretable Deep Reinforcement Learning

被引:2
|
作者
Chen, Qiliang [1 ]
Heydari, Babak [2 ]
机构
[1] Northeastern Univ, Dept Mech & Ind Engn, MultiAGent Intelligent Complex Syst MAGICS Lab, Boston, MA 02115 USA
[2] Northeastern Univ, Inst Experiential AI, Dept Mech & Ind Engn, MultiAGent Intelligent Complex Syst MAGICS Lab, Boston, MA 02115 USA
关键词
artificial intelligence; machine learning; systems design; systems engineering; reinforcement learning; interpretable AI; resource allocation; SOCIOTECHNICAL SYSTEMS; RADIO; DESIGN; GAME;
D O I
10.1115/1.4055057
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Systems-of-systems (SoS) often include multiple agents that interact in both cooperative and competitive modes. Moreover, they involve multiple resources, including energy, information, and bandwidth. If these resources are limited, agents need to decide how to share resources cooperatively to reach the system-level goal, while performing the tasks assigned to them autonomously. This paper takes a step toward addressing these challenges by proposing a dynamic two-tier learning framework, based on deep reinforcement learning that enables dynamic resource allocation while acknowledging the autonomy of systems constituents. The two-tier learning framework that decouples the learning process of the SoS constituents from that of the resource manager ensures that the autonomy and learning of the SoS constituents are not compromised as a result of interventions executed by the resource manager. We apply the proposed two-tier learning framework on a customized OpenAI Gym environment and compare the results of the proposed framework to baseline methods of resource allocation to show the superior performance of the two-tier learning scheme across a different set of SoS key parameters. We then use the results of this experiment and apply our heuristic inference method to interpret the decisions of the resource manager for a range of environment and agent parameters.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] ReCARL: Resource Allocation in Cloud RANs With Deep Reinforcement Learning
    Xu, Zhiyuan
    Tang, Jian
    Yin, Chengxiang
    Wang, Yanzhi
    Xue, Guoliang
    Wang, Jing
    Gursoy, M. Cenk
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (07) : 2533 - 2545
  • [32] Deep Reinforcement Learning for Resource Allocation in Blockchain-based Federated Learning
    Dai, Yueyue
    Yang, Huijiong
    Yang, Huiran
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 179 - 184
  • [33] Deep reinforcement learning based resource allocation algorithm in cellular networks
    Liao X.
    Yan S.
    Shi J.
    Tan Z.
    Zhao Z.
    Li Z.
    Tongxin Xuebao/Journal on Communications, 2019, 40 (02): : 11 - 18
  • [34] Reinforcement Learning Enabled Dynamic Resource Allocation in the Internet of Vehicles
    Liang, Hongbin
    Zhang, Xiaohui
    Hong, Xintao
    Zhang, Zongyuan
    Li, Mushu
    Hu, Guangdi
    Hou, Fen
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (07) : 4957 - 4967
  • [35] Resource Allocation in Multi-cell NOMA Systems with Multi-Agent Deep Reinforcement Learning
    Wang, Shichao
    Wang, Xiaoming
    Zhang, Yuhan
    Xu, Youyun
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [36] Resource Allocation Based on Deep Reinforcement Learning in IoT Edge Computing
    Xiong, Xiong
    Zheng, Kan
    Lei, Lei
    Hou, Lu
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (06) : 1133 - 1146
  • [37] UAV spatiotemporal crowdsourcing resource allocation based on deep reinforcement learning
    面向工业场景的无人机时空众包资源分配
    Huangfu, Wei (huangfuwei@ustb.edu.cn), 2025, 47 (01): : 91 - 100
  • [38] Fair Resource Allocation Based on Deep Reinforcement Learning in Fog Networks
    Xu, Huihui
    Zu, Yijun
    Shen, Fei
    Yan, Feng
    Qin, Fei
    Shen, Lianfeng
    AD HOC NETWORKS, ADHOCNETS 2019, 2019, 306 : 135 - 148
  • [39] Intelligent Deep Reinforcement Learning based Resource Allocation in Fog network
    Divya, V
    Sri, Leena R.
    2019 26TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA AND ANALYTICS WORKSHOP (HIPCW 2019), 2019, : 18 - 22
  • [40] Deep Reinforcement Learning based Computation Offloading and Resource Allocation for MEC
    Li, Ji
    Gao, Hui
    Lv, Tiejun
    Lu, Yueming
    2018 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2018,