Edge-preserving adaptive autoregressive model for Poisson noise reduction

被引:1
|
作者
Takalo, Reijo [1 ]
Hytti, Heli [2 ]
Ihalainen, Heimo [3 ]
Sohlberg, Antti [4 ]
机构
[1] Oulu Univ Hosp, Dept Diagnost Radiol, Div Nucl Med, POB 500, Oulu 90029, Finland
[2] Tampere Univ Hosp, Gastroenterol Outpatient Clin, Tampere, Finland
[3] Tampere Univ, Fac Engn & Nat Sci, Automat Technol & Mech Engn, Tampere, Finland
[4] Joint Author Paijat Hame Social & Hlth Care, Lab Clin Physiol & Nucl Med, Lahti, Finland
关键词
autoregressive modelling; image filtering; Poisson noise;
D O I
10.1097/MNM.0000000000001377
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Autoregressive models in image processing are linear prediction models that split an image into a predicted (i.e. filtered) image and a prediction error image, which extracts data on the image edges. Edge separation is a crucial feature of an autoregressive model. Data on the edges can be processed in different ways and then added to the filtered image. Another basic feature of our method is spatially varying modelling. In this short article, we propose an improved autoregressive model that preserves image sharpness around the edges of the image and focus on the reduction of Poisson noise, which degrades nuclear medicine images and presents a special challenge in medical imaging.
引用
收藏
页码:707 / 710
页数:4
相关论文
共 42 条