Implicit numerical approximation scheme for the fractional Fokker-Planck equation

被引:7
|
作者
Wu, Chunhong [1 ]
Lu, Linzhang [2 ]
机构
[1] Xiamen Univ Technol, Dept Math & Phys, Xiamen 361024, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
Fractional Fokker-Planck equation; Subdiffusion; Numerical method; Stability; Convergence; FINITE-DIFFERENCE METHOD; DIFFUSION EQUATION; RANDOM-WALK; STABILITY; DYNAMICS; MODEL; FLOW;
D O I
10.1016/j.amc.2010.03.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider an anomalous subdiffusion process, governed by fractional Fokker-Planck equation. An effective numerical method for approximating Fokker-Planck equation in a bounded domain is presented. The stability and convergence of the numerical method are analyzed. Some numerical examples are presented to show the application of the present technique. The numerical results exhibit the good performance of our theoretical analysis. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1945 / 1955
页数:11
相关论文
共 50 条
  • [41] PENCIL-BEAM APPROXIMATION OF FRACTIONAL FOKKER-PLANCK
    Bal, Guillaume
    Palacios, Benjamin
    KINETIC AND RELATED MODELS, 2021, 14 (05) : 767 - 817
  • [42] Numerical method for the nonlinear Fokker-Planck equation
    Zhang, DS
    Wei, GW
    Kouri, DJ
    Hoffman, DK
    PHYSICAL REVIEW E, 1997, 56 (01): : 1197 - 1206
  • [43] NUMERICAL EXPERIENCES ON NONLINEAR FOKKER-PLANCK EQUATION
    BRAUN, JC
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1971, 272 (20): : 1178 - &
  • [44] Convergences of the squareroot approximation scheme to the Fokker-Planck operator
    Heida, Martin
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (13): : 2599 - 2635
  • [45] Numerical Approximations for the Fractional Fokker-Planck Equation with Two-Scale Diffusion
    Sun, Jing
    Deng, Weihua
    Nie, Daxin
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (02)
  • [46] Numerical algorithms for the time-space tempered fractional Fokker-Planck equation
    Sun, Xiaorui
    Zhao, Fengqun
    Chen, Shuiping
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [47] NUMERICAL SOLUTION OF FRACTIONAL FOKKER-PLANCK EQUATION USING THE OPERATIONAL COLLOCATION METHOD
    Aminataei, A.
    Vanani, S. Karimi
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2013, 12 (01) : 33 - 43
  • [48] Numerical solutions for solving model time-fractional Fokker-Planck equation
    Mahdy, Amr M. S.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (02) : 1120 - 1135
  • [49] NUMERICAL SOLUTION OF THE TIME-FRACTIONAL FOKKER-PLANCK EQUATION WITH GENERAL FORCING
    Le, Kim Ngan
    McLean, William
    Mustapha, Kassem
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) : 1763 - 1784
  • [50] Numerical algorithms for the time-space tempered fractional Fokker-Planck equation
    Xiaorui Sun
    Fengqun Zhao
    Shuiping Chen
    Advances in Difference Equations, 2017