Implicit numerical approximation scheme for the fractional Fokker-Planck equation

被引:7
|
作者
Wu, Chunhong [1 ]
Lu, Linzhang [2 ]
机构
[1] Xiamen Univ Technol, Dept Math & Phys, Xiamen 361024, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
Fractional Fokker-Planck equation; Subdiffusion; Numerical method; Stability; Convergence; FINITE-DIFFERENCE METHOD; DIFFUSION EQUATION; RANDOM-WALK; STABILITY; DYNAMICS; MODEL; FLOW;
D O I
10.1016/j.amc.2010.03.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider an anomalous subdiffusion process, governed by fractional Fokker-Planck equation. An effective numerical method for approximating Fokker-Planck equation in a bounded domain is presented. The stability and convergence of the numerical method are analyzed. Some numerical examples are presented to show the application of the present technique. The numerical results exhibit the good performance of our theoretical analysis. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1945 / 1955
页数:11
相关论文
共 50 条
  • [21] Partial approximation of the master equation by the Fokker-Planck equation
    Sjoberg, Paul
    Applied Parallel Computing: STATE OF THE ART IN SCIENTIFIC COMPUTING, 2007, 4699 : 637 - 646
  • [22] Approximation to a Fokker-Planck equation for the Brownian motor
    Ikota, Ryo
    PHYSICAL REVIEW E, 2018, 97 (06)
  • [23] Operational Tau Approximation for the Fokker-Planck Equation
    Dehcheshmeh, S. S.
    Vanani, S. Karimi
    Hafshejani, J. S.
    CHINESE PHYSICS LETTERS, 2012, 29 (04)
  • [24] Approximation of the Fokker-Planck equation of the stochastic chemostat
    Campillo, Fabien
    Joannides, Marc
    Larramendy-Valverde, Irene
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 99 : 37 - 53
  • [25] Fractional Fokker-Planck equation for fractal media
    Tarasov, VE
    CHAOS, 2005, 15 (02)
  • [26] On the approximation of the Fokker-Planck equation by moment systems
    Dreyer, W
    Junk, M
    Kunik, M
    NONLINEARITY, 2001, 14 (04) : 881 - 906
  • [27] NUMERICAL SOLUTION OF TIME-FRACTIONAL ORDER FOKKER-PLANCK EQUATION
    Prakash, Amit
    Kumar, Manoj
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (03): : 446 - 454
  • [28] Fokker-Planck equation of the fractional Brownian motion
    Di Paola, M.
    Pirrotta, A.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2022, 147
  • [29] FRACTIONAL FOKKER-PLANCK EQUATION IN A FRACTAL MEDIUM
    Deng, Shuxian
    Ge, Xinxin
    THERMAL SCIENCE, 2020, 24 (04): : 2589 - 2595
  • [30] Fokker-Planck equation with fractional coordinate derivatives
    Tarasov, Vasily E.
    Zaslavsky, George M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (26) : 6505 - 6512