Poisson-Voronoi tessellations in three-dimensional hyperbolic spaces

被引:9
作者
Isokawa, Y [1 ]
机构
[1] Kagoshima Univ, Fac Educ, Kagoshima 890, Japan
关键词
random tessellation; Voronoi tessellation; mean characteristics; hyperbolic space;
D O I
10.1017/S000186780001017X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study Poisson-Voronoi tessellations in three-dimensional hyperbolic spaces, and give explicit expressions for mean surface area, mean perimeter length, and mean number of vertices of their cells. Furthermore we compare these mean characteristics with those for Poisson-Voronoi tessellations in three-dimensional Euclidean spaces. It is shown that, as the absolute value of the curvature of hyperbolic spaces increases from zero to infinity, these mean characteristics increase monotonically from those for the Euclidean case to infinity.
引用
收藏
页码:648 / 662
页数:15
相关论文
共 44 条
  • [31] A three-dimensional geometrical model for the microstructure of additively manufactured metals
    Karamooz-Ravari, Mohammad Reza
    Andani, Mohsen Taheri
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2022, 236 (12) : 2436 - 2454
  • [32] Three-dimensional rendering of trabecular bone microarchitecture using a probabilistic approach
    Kirby, Matthew
    Morshed, Abu Hena
    Gomez, Joel
    Xiao, Pengwei
    Hu, Yizhong
    Guo, X. Edward
    Wang, Xiaodu
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2020, 19 (04) : 1263 - 1281
  • [33] Three-dimensional virtual grain structure generation with grain size control
    Zhang, P.
    Karimpour, M.
    Balint, D.
    Lin, J.
    MECHANICS OF MATERIALS, 2012, 55 : 89 - 101
  • [34] Three-dimensional rendering of trabecular bone microarchitecture using a probabilistic approach
    Matthew Kirby
    Abu Hena Morshed
    Joel Gomez
    Pengwei Xiao
    Yizhong Hu
    X. Edward Guo
    Xiaodu Wang
    Biomechanics and Modeling in Mechanobiology, 2020, 19 : 1263 - 1281
  • [35] A Novel Modeling Approach to Simulate Rolling Contact Fatigue and Three-Dimensional Spalls
    Walvekar, Aditya A.
    Morris, Dallin
    Golmohammadi, Zamzam
    Sadeghi, Farshid
    Correns, Martin
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2018, 140 (03):
  • [36] Classification of Quasi-Einstein Structure on Three-Dimensional Homogeneous Almost α-Cosympletic Manifolds
    Khatri, Mohan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (07)
  • [37] Global-local optimization for parameter structure identification in three-dimensional groundwater modeling
    Tsai, FTC
    Sun, NZ
    Yeh, WWG
    WATER RESOURCES RESEARCH, 2003, 39 (02) : SBH131 - SBH1314
  • [38] STRUCTURE IN THE THREE-DIMENSIONAL GALAXY DISTRIBUTION. I. METHODS AND EXAMPLE RESULTS
    Way, M. J.
    Gazis, P. R.
    Scargle, Jeffrey D.
    ASTROPHYSICAL JOURNAL, 2011, 727 (01)
  • [39] Periodic three-dimensional mesh generation for particle reinforced composites with application to metal matrix composites
    Fritzen, Felix
    Boehlke, Thomas
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (05) : 706 - 718
  • [40] THE STRUCTURE JACOBI OPERATOR OF THREE-DIMENSIONAL REAL HYPERSURFACES IN NON-FLAT COMPLEX SPACE FORMS
    Kaimakamis, George
    Panagiotidou, Konstantina
    de Dios Perez, Juan
    KODAI MATHEMATICAL JOURNAL, 2016, 39 (01) : 154 - 174