Poisson-Voronoi tessellations in three-dimensional hyperbolic spaces

被引:9
|
作者
Isokawa, Y [1 ]
机构
[1] Kagoshima Univ, Fac Educ, Kagoshima 890, Japan
关键词
random tessellation; Voronoi tessellation; mean characteristics; hyperbolic space;
D O I
10.1017/S000186780001017X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study Poisson-Voronoi tessellations in three-dimensional hyperbolic spaces, and give explicit expressions for mean surface area, mean perimeter length, and mean number of vertices of their cells. Furthermore we compare these mean characteristics with those for Poisson-Voronoi tessellations in three-dimensional Euclidean spaces. It is shown that, as the absolute value of the curvature of hyperbolic spaces increases from zero to infinity, these mean characteristics increase monotonically from those for the Euclidean case to infinity.
引用
收藏
页码:648 / 662
页数:15
相关论文
共 44 条
  • [1] Some distributional results for Poisson-Voronoi tessellations
    Baumstark, Volker
    Last, Guenter
    ADVANCES IN APPLIED PROBABILITY, 2007, 39 (01) : 16 - 40
  • [2] MULTITYPE THRESHOLD GROWTH: CONVERGENCE TO POISSON-VORONOI TESSELLATIONS
    Gravner, Janko
    Griffeath, David
    ANNALS OF APPLIED PROBABILITY, 1997, 7 (03): : 615 - 647
  • [3] Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes
    Lucarini, Valerio
    JOURNAL OF STATISTICAL PHYSICS, 2009, 134 (01) : 185 - 206
  • [4] Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes
    Valerio Lucarini
    Journal of Statistical Physics, 2009, 134
  • [5] Automated generation of Poisson-Voronoi tessellations in R2 for NS (Nov 2003)
    Minnaar, M
    Ngwenya, DW
    2004 IEEE AFRICON: 7TH AFRICON CONFERENCE IN AFRICA, VOLS 1 AND 2: TECHNOLOGY INNOVATION, 2004, : 1091 - 1097
  • [6] ANCHORED EXPANSION, SPEED AND THE POISSON-VORONOI TESSELLATION IN SYMMETRIC SPACES
    Benjamini, Itai
    Paquette, Elliot
    Pfeffer, Joshua
    ANNALS OF PROBABILITY, 2018, 46 (04): : 1917 - 1956
  • [7] Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations
    Fritzen, Felix
    Boehlke, Thomas
    Schnack, Eckart
    COMPUTATIONAL MECHANICS, 2009, 43 (05) : 701 - 713
  • [8] Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations
    F. Fritzen
    T. Böhlke
    E. Schnack
    Computational Mechanics, 2009, 43 : 701 - 713
  • [9] A central limit theorem for the Poisson-Voronoi approximation
    Schulte, Matthias
    ADVANCES IN APPLIED MATHEMATICS, 2012, 49 (3-5) : 285 - 306
  • [10] Statistical properties of Poisson-Voronoi tessellation cells in bounded regions
    Gezer, Fatih
    Aykroyd, Robert G.
    Barber, Stuart
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (05) : 915 - 933