Comparison of a Shack-Hartmann and distorted grating wavefront sensor using WaveTrain™ simulation software

被引:0
|
作者
Erry, GRG [1 ]
Harrison, P [1 ]
Otten, LJ [1 ]
Weaver, L [1 ]
机构
[1] Kestrel Corp, Albuquerque, NM 87109 USA
来源
OPTICS IN ATMOSPHERIC PROPAGATION AND ADAPTIVE SYSTEMS VII | 2004年 / 5572卷
关键词
adaptive optics; WaveTrain; simulation; curvature wavefront sensor; distorted grating;
D O I
10.1117/12.584584
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The concept of a curvature-based wavefront sensor using a distorted grating as the imaging element to capture images of two spatially separated planes onto a single detector has been reported previously. This presentation reports on simulations comparing a Shack-Hartmann (S-H) sensor with a distorted grating wavefront sensor (DGWFS) for a generic adaptive optics (AO) system using a Clear-1 atmospheric model. Using WaveTrain(TM) simulation software a model of the DGWFS has been developed and integrated into the software. A simulation of a complete AO system including a tip/tilt system, high order correction system, atmospheric model, and a back-propagating laser system has been constructed. The model has then been exercised using various seeing conditions, noise levels, WFS sensitivities, camera systems, and other parameters. A comparison between the performance of the AO system using the S-H sensor and the DGWFS is presented, both in terms of wavefront measurement accuracy, image quality, and as a beam delivery system.
引用
收藏
页码:319 / 329
页数:11
相关论文
共 50 条
  • [1] Reconfigurable Shack-Hartmann wavefront sensor
    Rha, J
    Voelz, DG
    Giles, MK
    OPTICAL ENGINEERING, 2004, 43 (01) : 251 - 256
  • [2] Polarized Shack-Hartmann wavefront sensor
    Yang, Yanrong
    Huang, Linhai
    Xiao, Yawei
    Gu, Naiting
    FRONTIERS IN PHYSICS, 2023, 11
  • [3] Shack-Hartmann wavefront sensor precision and accuracy
    Neal, DR
    Copland, J
    Neal, D
    ADVANCED CHARACTERIZATION TECHNIQUES FOR OPTICAL, SEMICONDUCTOR, AND DATA STORAGE COMPONENTS, 2002, 4779 : 148 - 160
  • [4] Shack-Hartmann wavefront sensor in a convergent beam
    S. A. Potanin
    P. S. Kotlyar
    Astronomy Letters, 2006, 32 : 427 - 430
  • [5] Shack-Hartmann wavefront sensor in a convergent beam
    Potanin, S. A.
    Kotlyar, P. S.
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2006, 32 (06): : 427 - 430
  • [6] CUMULATIVE WAVEFRONT RECONSTRUCTOR FOR THE SHACK-HARTMANN SENSOR
    Zhariy, Mariya
    Neubauer, Andreas
    Rosensteiner, Matthias
    Ramlau, Ronny
    INVERSE PROBLEMS AND IMAGING, 2011, 5 (04) : 893 - 913
  • [7] Wavefront reconstruction with the adaptive Shack-Hartmann sensor
    Seifert, L
    Tiziani, HJ
    Osten, W
    OPTICS COMMUNICATIONS, 2005, 245 (1-6) : 255 - 269
  • [8] Detecting error of Shack-Hartmann wavefront sensor
    Jiang, WH
    Xian, H
    Shen, F
    ADAPTIVE OPTICS AND APPLICATIONS, 1997, 3126 : 534 - 544
  • [9] A comparison of the Shack-Hartmann and pyramid wavefront sensors
    Chew, Theam Yong
    Clare, Richard M.
    Lane, Richard G.
    OPTICS COMMUNICATIONS, 2006, 268 (02) : 189 - 195
  • [10] Random generation of the turbulence slopes of a Shack-Hartmann wavefront sensor
    Conan, Rodolphe
    OPTICS LETTERS, 2014, 39 (06) : 1390 - 1393