Equivariant coarse homotopy theory and coarse algebraic K-homology

被引:9
作者
Bunke, Ulrich [1 ]
Engel, Alexander [1 ]
Kasprowski, Daniel [2 ]
Winges, Christoph [2 ]
机构
[1] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
[2] Rheinische Friedrich Wilhelms Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
来源
K-THEORY IN ALGEBRA, ANALYSIS AND TOPOLOGY | 2020年 / 749卷
关键词
FINITENESS; CONJECTURES; SPACES; FAMILY;
D O I
10.1090/conm/749/15068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study equivariant coarse homology theories through an axiomatic framework. To this end we introduce the category of equivariant bornological coarse spaces and construct the universal equivariant coarse homology theory with values in the category of equivariant coarse motivic spectra. As examples of equivariant coarse homology theories we discuss equivariant coarse ordinary homology and equivariant coarse algebraic K-homology. Moreover, we discuss the cone functor, its relation with equivariant homology theories in equivariant topology, and assembly and forget-control maps. This is a preparation for applications in subsequent papers aiming at split-injectivity results for the Farrell-Jones assembly map.
引用
收藏
页码:13 / 104
页数:92
相关论文
共 41 条
[1]  
[Anonymous], 1995, K-theory, DOI DOI 10.1007/BF00961665
[2]   On the isomorphism conjecture in algebraic K-theory [J].
Bartels, A ;
Farrell, T ;
Jones, L ;
Reich, H .
TOPOLOGY, 2004, 43 (01) :157-213
[3]   The Farrell-Hsiang method revisited [J].
Bartels, A. ;
Lueck, W. .
MATHEMATISCHE ANNALEN, 2012, 354 (01) :209-226
[4]   The K-theoretic Farrell-Jones conjecture for hyperbolic groups [J].
Bartels, Arthur ;
Lueck, Wolfgang ;
Reich, Holger .
INVENTIONES MATHEMATICAE, 2008, 172 (01) :29-70
[5]   On the K-theory of groups with finite asymptotic dimension [J].
Bartels, Arthur ;
Rosenthal, David .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 612 :35-57
[6]   Coefficients for the Farrell-Jones Conjecture [J].
Bartels, Arthur ;
Reich, Holger .
ADVANCES IN MATHEMATICS, 2007, 209 (01) :337-362
[7]   Spectral Mackey functors and equivariant algebraic K-theory (I) [J].
Barwick, Clark .
ADVANCES IN MATHEMATICS, 2017, 304 :646-727
[8]  
Bunke U., ARXIV181111864
[9]  
Bunke U., 2017, ARXIV170602164V2
[10]  
Bunke U., 2016, ARXIV160703657V3