Text Mining for Adverse Drug Events: the Promise, Challenges, and State of the Art

被引:142
|
作者
Harpaz, Rave [1 ]
Callahan, Alison [1 ]
Tamang, Suzanne [1 ]
Low, Yen [1 ]
Odgers, David [1 ]
Finlayson, Sam [1 ]
Jung, Kenneth [1 ]
LePendu, Paea [1 ]
Shah, Nigam H. [1 ]
机构
[1] Stanford Univ, Ctr Biomed Informat Res, Stanford, CA 94305 USA
关键词
ELECTRONIC HEALTH RECORDS; SEVERE BONE; SIGNALS; WEB; INFORMATION; ALGORITHMS; DISCOVERY; SCIENCE; DESIGN; CORPUS;
D O I
10.1007/s40264-014-0218-z
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Text mining is the computational process of extracting meaningful information from large amounts of unstructured text. It is emerging as a tool to leverage underutilized data sources that can improve pharmacovigilance, including the objective of adverse drug event (ADE) detection and assessment. This article provides an overview of recent advances in pharmacovigilance driven by the application of text mining, and discusses several data sources-such as biomedical literature, clinical narratives, product labeling, social media, and Web search logs-that are amenable to text mining for pharmacovigilance. Given the state of the art, it appears text mining can be applied to extract useful ADE-related information from multiple textual sources. Nonetheless, further research is required to address remaining technical challenges associated with the text mining methodologies, and to conclusively determine the relative contribution of each textual source to improving pharmacovigilance.
引用
收藏
页码:777 / 790
页数:14
相关论文
共 50 条
  • [41] Educational Data Mining: A Review of the State of the Art
    Romero, Cristobal
    Ventura, Sebastian
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2010, 40 (06): : 601 - 618
  • [42] ADEPt, a semantically-enriched pipeline for extracting adverse drug events from free-text electronic health records
    Iqbal, Ehtesham
    Mallah, Robbie
    Rhodes, Daniel
    Wu, Honghan
    Romero, Alvin
    Chang, Nynn
    Dzahini, Olubanke
    Pandey, Chandra
    Broadbent, Matthew
    Stewart, Robert
    Dobson, Richard J. B.
    Ibrahim, Zina M.
    PLOS ONE, 2017, 12 (11):
  • [43] Adverse events targeted by drug-drug interaction alerts in hospitalized patients
    Gatenby, James
    Blomqvist, Magnus
    Burke, Rosemary
    Ritchie, Angus
    Gibson, Kathy
    Patanwala, Asad E.
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2020, 143 (143)
  • [44] Temporal reasoning over clinical text: the state of the art
    Sun, Weiyi
    Rumshisky, Anna
    Uzuner, Ozlem
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2013, 20 (05) : 814 - 819
  • [45] Quantum Computing for High-Energy Physics: State of the Art and Challenges
    Di Meglio, Alberto
    Jansen, Karl
    Tavernelli, Ivano
    Alexandrou, Constantia
    Arunachalam, Srinivasan
    Bauer, Christian W.
    Borras, Kerstin
    Carrazza, Stefano
    Crippa, Arianna
    Croft, Vincent
    de Putter, Roland
    Delgado, Andrea
    Dunjko, Vedran
    Egger, Daniel J.
    Fernandez-Combarro, Elias
    Fuchs, Elina
    Funcke, Lena
    Gonzalez-Cuadra, Daniel
    Grossi, Michele
    Halimeh, Jad C.
    Holmes, Zoe
    Kuehn, Stefan
    Lacroix, Denis
    Lewis, Randy
    Lucchesi, Donatella
    Martinez, Miriam Lucio
    Meloni, Federico
    Mezzacapo, Antonio
    Montangero, Simone
    Nagano, Lento
    Pascuzzi, Vincent R.
    Radescu, Voica
    Ortega, Enrique Rico
    Roggero, Alessandro
    Schuhmacher, Julian
    Seixas, Joao
    Silvi, Pietro
    Spentzouris, Panagiotis
    Tacchino, Francesco
    Temme, Kristan
    Terashi, Koji
    Tura, Jordi
    Tueysuez, Cenk
    Vallecorsa, Sofia
    Wiese, Uwe-Jens
    Yoo, Shinjae
    Zhang, Jinglei
    PRX QUANTUM, 2024, 5 (03):
  • [46] Detection of adverse drug events using an electronic trigger tool
    Lim, Dennison
    Melucci, Joe
    Rizer, Milisa K.
    Prier, Beth E.
    Weber, Robert J.
    AMERICAN JOURNAL OF HEALTH-SYSTEM PHARMACY, 2016, 73 (17) : S112 - S120
  • [47] A Clustering Framework for Patient Phenotyping with Application to Adverse Drug Events
    Bampa, Maria
    Papapetrou, Panagiotis
    Hollmen, Jaakko
    2020 IEEE 33RD INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS(CBMS 2020), 2020, : 177 - 182
  • [48] Mining the pharmacogenomics literature-a survey of the state of the art
    Hahn, Udo
    Cohen, K. Bretonnel
    Garten, Yael
    Shah, Nigam H.
    BRIEFINGS IN BIOINFORMATICS, 2012, 13 (04) : 460 - 494
  • [49] Narrative Reporting: State of the Art and Future Challenges
    Michelon, Giovanna
    Trojanowski, Grzegorz
    Sealy, Ruth
    ACCOUNTING IN EUROPE, 2022, 19 (01) : 7 - 47
  • [50] Clinical text mining for efficient extraction of drug-allergy reactions
    Casillas, Arantza
    Gojenola, Koldo
    Perez, Alicia
    Oronoz, Maite
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 946 - 952