On-chip integrated laser-driven particle accelerator

被引:169
作者
Sapra, Neil V. [1 ]
Yang, Ki Youl [1 ]
Vercruysse, Dries [1 ]
Leedle, Kenneth J. [1 ]
Black, Dylan S. [1 ]
England, R. Joel [2 ]
Su, Logan [1 ]
Trivedi, Rahul [1 ]
Miao, Yu [1 ]
Solgaard, Olav [1 ]
Byer, Robert L. [1 ]
Vuckovic, Jelena [1 ]
机构
[1] Stanford Univ, EL Ginzton Lab, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Menlo Pk, CA USA
基金
美国国家科学基金会;
关键词
DIELECTRIC LASER; INVERSE DESIGN; ELECTRONS; COMPACT; DAMAGE;
D O I
10.1126/science.aay5734
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Particle accelerators represent an indispensable tool in science and industry. However, the size and cost of conventional radio-frequency accelerators limit the utility and reach of this technology. Dielectric laser accelerators (DLAs) provide a compact and cost-effective solution to this problem by driving accelerator nanostructures with visible or near-infrared pulsed lasers, resulting in a 104 reduction of scale. Current implementations of DLAs rely on free-space lasers directly incident on the accelerating structures, limiting the scalability and integrability of this technology. We present an experimental demonstration of a waveguide-integrated DLA that was designed using a photonic inverse-design approach. By comparing the measured electron energy spectra with particle-tracking simulations, we infer a maximum energy gain of 0.915 kilo-electron volts over 30 micrometers, corresponding to an acceleration gradient of 30.5 mega-electron volts per meter. On-chip acceleration provides the possibility for a completely integrated mega-electron volt-scale DLA.
引用
收藏
页码:79 / +
页数:22
相关论文
共 39 条
[1]  
[Anonymous], 2005, Computational Electrodynamics: FiniteDifference Time-Domain Method
[2]  
[Anonymous], 2019, FDTD 3D EL SIM
[3]   Laser-Driven Electron Lensing in Silicon Microstructures [J].
Black, Dylan S. ;
Leedle, Kenneth J. ;
Miao, Yu ;
Niedermayer, Uwe ;
Byer, Robert L. ;
Solgaard, Olav .
PHYSICAL REVIEW LETTERS, 2019, 122 (10)
[4]   Dielectric laser acceleration of nonrelativistic electrons at a single fused silica grating structure: Experimental part [J].
Breuer, John ;
Graf, Roswitha ;
Apolonski, Alexander ;
Hommelhoff, Peter .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2014, 17 (02)
[5]   Laser-Based Acceleration of Nonrelativistic Electrons at a Dielectric Structure [J].
Breuer, John ;
Hommelhoff, Peter .
PHYSICAL REVIEW LETTERS, 2013, 111 (13)
[6]   Enhanced energy gain in a dielectric laser accelerator using a tilted pulse front laser [J].
Cesar, D. ;
Maxson, J. ;
Shen, X. ;
Wootton, K. P. ;
Tan, S. ;
England, R. J. ;
Musumeci, P. .
OPTICS EXPRESS, 2018, 26 (22) :29216-29224
[7]   High-field nonlinear optical response and phase control in a dielectric laser accelerator [J].
Cesar, D. ;
Custodio, S. ;
Maxson, J. ;
Musumeci, P. ;
Shen, X. ;
Threlkeld, E. ;
England, R. J. ;
Hanuka, A. ;
Makasyuk, I., V ;
Peralta, E. A. ;
Wootton, K. P. ;
Wu, Z. .
COMMUNICATIONS PHYSICS, 2018, 1
[8]   Silicon buried gratings for dielectric laser electron accelerators [J].
Chang, Chia-Ming ;
Solgaard, Olav .
APPLIED PHYSICS LETTERS, 2014, 104 (18)
[9]   Resonant enhancement of accelerating gradient with silicon dual-grating structure for dielectric laser acceleration of subrelativistic electrons [J].
Chen, Zhaofu ;
Koyama, Kazuyoshi ;
Uesaka, Mitsuru ;
Yoshida, Mitsuhiro ;
Zhang, Rui .
APPLIED PHYSICS LETTERS, 2018, 112 (03)
[10]   Dielectric laser accelerators [J].
England, R. Joel ;
Noble, Robert J. ;
Bane, Karl ;
Dowell, David H. ;
Ng, Cho-Kuen ;
Spencer, James E. ;
Tantawi, Sami ;
Wu, Ziran ;
Byer, Robert L. ;
Peralta, Edgar ;
Soong, Ken ;
Chang, Chia-Ming ;
Montazeri, Behnam ;
Wolf, Stephen J. ;
Cowan, Benjamin ;
Dawson, Jay ;
Gai, Wei ;
Hommelhoff, Peter ;
Huang, Yen-Chieh ;
Jing, Chunguang ;
McGuinness, Christopher ;
Palmer, Robert B. ;
Naranjo, Brian ;
Rosenzweig, James ;
Travish, Gil ;
Mizrahi, Amit ;
Schachter, Levi ;
Sears, Christopher ;
Werner, Gregory R. ;
Yoder, Rodney B. .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1337-1389