On linearly implicit IMEX Runge-Kutta methods for degenerate convection-diffusion problems modeling polydisperse sedimentation

被引:15
作者
Boscarino, Sebastiano [1 ]
Buerger, Raimund [2 ,3 ]
Mulet, Pep [4 ]
Russo, Giovanni [1 ]
Miguel Villada, Luis [5 ,6 ]
机构
[1] Univ Catania, Dept Math & Comp Sci, I-95125 Catania, Italy
[2] Univ Concepcion, CI2MA, Fac Ciencias Fis & Matemat, Casilla 160-C, Concepcion, Chile
[3] Univ Concepcion, Dept Ingn Matemat, Fac Ciencias Fis & Matemat, Casilla 160-C, Concepcion, Chile
[4] Univ Valencia, Dept Matemat Aplicada, Av Dr Moliner 50, E-46100 Burjassot, Spain
[5] Univ Bio Bio, GIMNAP, Dept Matemat, Casilla 5-C, Concepcion, Chile
[6] Univ Concepcion, CI2MA, Casilla 160-C, Concepcion, Chile
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2016年 / 47卷 / 01期
关键词
implicit-explicit Runge-Kutta schemes; degenerate convection-diffusion equations; linearly implicit methods; polydisperse sedimentation; HYPERBOLIC SYSTEMS; SCHEMES;
D O I
10.1007/s00574-016-0130-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Implicit-explicit (IMEX) Runge-Kutta (RK) methods are suitable for the solution of nonlinear, possibly strongly degenerate, convection-diffusion problems, since the stability restrictions, coming from the explicitly treated convective part, are much less severe than those that would be deduced from an explicit treatment of the diffusive term. A particularly efficient variant of these schemes, so-called linearly implicit IMEX-RK schemes, arise from discretizing the diffusion terms in a way that more carefully distinguishes between stiff and nonstiff dependence, such that in each time step only a linear system needs to be solved. These schemes provide an efficient tool for the numerical exploration of sediment formation and composition under a strongly degenerate polydisperse sedimentation model.
引用
收藏
页码:171 / 185
页数:15
相关论文
共 13 条
[1]   Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression [J].
Berres, S ;
Bürger, R ;
Karlsen, KH ;
Tory, EM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 64 (01) :41-80
[2]   Neumann problems for quasi-linear parabolic systems modeling polydisperse suspensions [J].
Berres, Stefan ;
Buerger, Raimund ;
Frid, Hermano .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (02) :557-573
[3]  
Boscarino S., HIGH ORDER IN PRESS
[4]   LINEARLY IMPLICIT IMEX RUNGE-KUTTA METHODS FOR A CLASS OF DEGENERATE CONVECTION-DIFFUSION PROBLEMS [J].
Boscarino, Sebastiano ;
Buerger, Raimund ;
Mulet, Pep ;
Russo, Giovanni ;
Villada, Luis M. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02) :B305-B331
[5]   HIGH-ORDER ASYMPTOTIC-PRESERVING METHODS FOR FULLY NONLINEAR RELAXATION PROBLEMS [J].
Boscarino, Sebastiano ;
Lefloch, Philippe G. ;
Russo, Giovanni .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (02) :A377-A395
[6]   REGULARIZED NONLINEAR SOLVERS FOR IMEX METHODS APPLIED TO DIFFUSIVELY CORRECTED MULTISPECIES KINEMATIC FLOW MODELS [J].
Buerger, Raimund ;
Mulet, Pep ;
Villada, Luis M. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (03) :B751-B777
[7]   On the implementation of WENO schemes for a class of polydisperse sedimentation models [J].
Buerger, Raimund ;
Donat, Rosa ;
Mulet, Pep ;
Vega, Carlos A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (06) :2322-2344
[8]  
Hairer E., 1993, Springer Series in Computational Mathematics, V8
[9]   Some techniques for improving the resolution of finite difference component-wise WENO schemes for polydisperse sedimentation models [J].
Marti, M. C. ;
Mulet, P. .
APPLIED NUMERICAL MATHEMATICS, 2014, 78 :1-13
[10]   Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation [J].
Pareschi, L ;
Russo, G .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 25 (01) :129-155