Numerical homogenization of a second order discrete model for traffic flow

被引:1
作者
Salazar, W. [1 ]
机构
[1] Normandie Univ, INSA Rouen, Lab Math INSA LMI EA FR CNRS 3335 3226, 685 Ave Univ, F-76801 St Etienne Du Rouvray, France
关键词
Traffic flow; Macroscopic model; Explicit scheme; Implicit scheme; Effective Hamiltonian; Viscosity solution; PARTIAL-DIFFERENTIAL-EQUATIONS; HYPERBOLIC CONSERVATION-LAWS; FRENKEL-KONTOROVA MODELS; HIGH-RESOLUTION SCHEMES; VISCOSITY SOLUTIONS; DYNAMICS; SYSTEMS; WAVES;
D O I
10.1016/j.camwa.2015.10.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to obtain a numerical approximation of the effective Hamiltonian for a system of PDEs deriving from a second order discrete model for traffic flow. We will propose an explicit and an implicit discretization for this effective Hamiltonian and we will provide the corresponding error estimates of Crandall Lions type. Finally, we will also present some numerical simulations. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:29 / 45
页数:17
相关论文
共 20 条
[1]  
[Anonymous], 1992, Bull. Amer. Math. Soc.
[2]   DYNAMICAL MODEL OF TRAFFIC CONGESTION AND NUMERICAL-SIMULATION [J].
BANDO, M ;
HASEBE, K ;
NAKAYAMA, A ;
SHIBATA, A ;
SUGIYAMA, Y .
PHYSICAL REVIEW E, 1995, 51 (02) :1035-1042
[3]  
Barles G., 1994, Mathematiques & Applications (Berlin) Mathematics & Applications, V17
[4]   Optimal velocity functions for car-following models [J].
Batista, Milan ;
Twrdy, Elen .
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2010, 11 (07) :520-529
[5]   A posteriori error estimates for the effective Hamiltonian of dislocation dynamics [J].
Cacace, S. ;
Chambolle, A. ;
Monneau, R. .
NUMERISCHE MATHEMATIK, 2012, 121 (02) :281-335
[6]  
CRANDALL MG, 1984, MATH COMPUT, V43, P1, DOI 10.1090/S0025-5718-1984-0744921-8
[7]  
Forcadel N, 2015, DIFFER INTEGRAL EQU, V28, P1039
[8]   HOMOGENIZATION OF ACCELERATED FRENKEL-KONTOROVA MODELS WITH n TYPES OF PARTICLES [J].
Forcadel, N. ;
Imbert, C. ;
Monneau, R. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (12) :6187-6227
[9]   Homogenization of fully overdamped Frenkel-Kontorova models [J].
Forcadel, N. ;
Imbert, C. ;
Monneau, R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) :1057-1097
[10]  
Garavello M., 2006, Traffic Flow on Networks, V1