Ultrafast pulsed laser ablation for synthesis of nanocrystals

被引:6
作者
Liu, Bing [1 ]
Hu, Zhendong [1 ]
Chen, Yanbin [2 ]
Sun, Kai [2 ]
Pan, Xiaoqing [2 ]
Che, Yong [1 ]
机构
[1] IMRA Amer Inc, 1044 Woodridge Ave, Ann Arbor, MI 48105 USA
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48105 USA
来源
COMMERCIAL AND BIOMEDICAL APPLICATIONS OF ULTRAFAST LASERS VII | 2007年 / 6460卷
关键词
ultrafast pulsed laser; laser ablation; nanocrystals; alloy nanoparticles;
D O I
10.1117/12.713263
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Near infrared ultrafast pulsed laser is used to ablate pure metal and metal alloy targets in a vacuum chamber. We find that by optimizing the ablation conditions, as a direct result of ultrafast laser ablation, crystalline nanoparticles can be abundantly produced without intermediate nucleation and growth processes. Combining with different background gases, versatile structural forms can also be obtained for the nanocrystals. Using metal nickel as a sample material, we have produced Ni/NiO core/shell nanospheres and NiO nanocubes. We also study the production of alloy nanoparticles, which has been challenging in fabrication. We demonstrate production of nanoparticles containing up to three metal elements using ultrafast laser ablation. The laser ablation process is investigated using an ion probe in realtime. Nanoparticle samples are examined using atomic force microscopy and high resolution transmission electron microscopy for morphological, structural, and chemical analysis. This study provides a simple physical method for generating nanoparticles with a narrow particle size distribution, a high particle yield, versatile chemical compositions and structural forms.
引用
收藏
页数:7
相关论文
共 23 条
[1]   Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum [J].
Amoruso, S ;
Ausanio, G ;
Bruzzese, R ;
Vitiello, M ;
Wang, X .
PHYSICAL REVIEW B, 2005, 71 (03)
[2]  
Anisimov MA, 1975, SOV PHYS USP, V17, P249
[3]   Metal nanoparticles generated by laser ablation [J].
Becker, MF ;
Brock, JR ;
Cai, H ;
Henneke, DE ;
Keto, JW ;
Lee, JY ;
Nichols, WT ;
Glicksman, HD .
NANOSTRUCTURED MATERIALS, 1998, 10 (05) :853-863
[4]   Cluster emission under femtosecond laser ablation of silicon [J].
Bulgakov, AV ;
Ozerov, I ;
Marine, W .
THIN SOLID FILMS, 2004, 453 :557-561
[5]   Pulsed laser ablation of solids: transition from normal vaporization to phase explosion [J].
Bulgakova, NM ;
Bulgakov, AV .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2001, 73 (02) :199-208
[6]   Mechanisms of decomposition of metal during femtosecond laser ablation [J].
Cheng, CR ;
Xu, XF .
PHYSICAL REVIEW B, 2005, 72 (16)
[7]   LASER PRODUCTION OF SUPERSONIC METAL CLUSTER BEAMS [J].
DIETZ, TG ;
DUNCAN, MA ;
POWERS, DE ;
SMALLEY, RE .
JOURNAL OF CHEMICAL PHYSICS, 1981, 74 (11) :6511-6512
[8]   LASER-INDUCED BREAKDOWN BY IMPACT IONIZATION IN SIO2 WITH PULSE WIDTHS FROM 7 NS TO 150 FS [J].
DU, D ;
LIU, X ;
KORN, G ;
SQUIER, J ;
MOUROU, G .
APPLIED PHYSICS LETTERS, 1994, 64 (23) :3071-3073
[9]   Synthesis of nanoparticles with femtosecond laser pulses [J].
Eliezer, S ;
Eliaz, N ;
Grossman, E ;
Fisher, D ;
Gouzman, I ;
Henis, Z ;
Pecker, S ;
Horovitz, Y ;
Fraenkel, M ;
Maman, S ;
Lereah, Y .
PHYSICAL REVIEW B, 2004, 69 (14) :144119-1
[10]  
FERMANN ME, 2003, ULTRAFAST LASERS TEC, pCH7