Single-atom cavity QED and optomicromechanics

被引:96
|
作者
Wallquist, M. [1 ,2 ,3 ]
Hammerer, K. [1 ,2 ,3 ]
Zoller, P. [1 ,2 ,3 ]
Genes, C. [1 ,2 ]
Ludwig, M. [4 ,5 ]
Marquardt, F. [4 ,5 ]
Treutlein, P. [6 ,7 ]
Ye, J. [3 ,8 ,9 ]
Kimble, H. J. [3 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantum Opt & Quantum Commun, A-6020 Innsbruck, Austria
[3] CALTECH, Norman Bridge Lab Phys 12 33, Pasadena, CA 91125 USA
[4] Univ Munich, Dept Phys, Ctr NanoSci, D-80333 Munich, Germany
[5] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[6] Univ Munich, Max Planck Inst Quantum Opt, D-80799 Munich, Germany
[7] Univ Munich, Dept Phys, D-80799 Munich, Germany
[8] Univ Colorado, Boulder, CO 80309 USA
[9] Natl Inst Stand & Technol, JILA, Boulder, CO 80309 USA
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 02期
关键词
THERMAL-CONDUCTIVITY;
D O I
10.1103/PhysRevA.81.023816
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In a recent publication [ K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, Phys. Rev. Lett. 103, 063005 ( 2009)] we have shown the possibility to achieve strong coupling of the quantized motion of a micron-sized mechanical system to the motion of a single trapped atom. In the proposed setup the coherent coupling between a SiN membrane and a single atom is mediated by the field of a high finesse cavity and can be much larger than the relevant decoherence rates. This makes the well-developed tools of cavity quantum electrodynamics with single atoms available in the realm of cavity optomechanics. In this article we elaborate on this scheme and provide detailed derivations and technical comments. Moreover, we give numerical as well as analytical results for a number of possible applications for transfer of squeezed or Fock states from atom to membrane as well as entanglement generation, taking full account of dissipation. In the limit of strong-coupling the preparation and verification of nonclassical states of a mesoscopic mechanical system is within reach.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Probabilistic Cloning of two Single-Atom States via Thermal Cavity
    Rui, Pin-Shu
    Liu, Dao-Jun
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (12) : 5055 - 5061
  • [22] Dynamics of single-atom motion observed in a high-finesse cavity
    Münstermann, P
    Fischer, T
    Maunz, P
    Pinkse, PWH
    Rempe, G
    PHYSICAL REVIEW LETTERS, 1999, 82 (19) : 3791 - 3794
  • [23] Strategies for real-time position control of a single atom in cavity QED
    Lynn, TW
    Birnbaum, K
    Kimble, HJ
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (10) : S215 - S225
  • [24] Frequency shift of an optical cavity mode due to a single-atom motion
    Moazzezi, Mojtaba
    Rostovtsev, Yuri V.
    JOURNAL OF MODERN OPTICS, 2019, 66 (06) : 674 - 678
  • [25] Probabilistic Cloning of two Single-Atom States via Thermal Cavity
    Pin-Shu Rui
    Dao-Jun Liu
    International Journal of Theoretical Physics, 2016, 55 : 5055 - 5061
  • [26] SINGLE-ATOM DETECTION
    ALKEMADE, CTJ
    APPLIED SPECTROSCOPY, 1981, 35 (01) : 1 - 14
  • [27] Single-atom magnetometry
    Wiesendanger, Roland
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2011, 15 (01): : 1 - 7
  • [28] Single-atom spintronics
    Hua, Susan Z.
    Sullivan, Matthew R.
    Armstrong, Jason N.
    Transactions of Nonferrous Metals Society of China (English Edition), 2006, 16 (SUPPL. 1): : 146 - 153
  • [29] A single-atom transistor
    Martin Fuechsle
    Jill A. Miwa
    Suddhasatta Mahapatra
    Hoon Ryu
    Sunhee Lee
    Oliver Warschkow
    Lloyd C. L. Hollenberg
    Gerhard Klimeck
    Michelle Y. Simmons
    Nature Nanotechnology, 2012, 7 (4) : 242 - 246
  • [30] Single-atom interferometry
    Huesmann, R
    Balzer, C
    Courteille, P
    Neuhauser, W
    Toschek, PE
    PHYSICAL REVIEW LETTERS, 1999, 82 (08) : 1611 - 1615