Single-atom cavity QED and optomicromechanics

被引:96
作者
Wallquist, M. [1 ,2 ,3 ]
Hammerer, K. [1 ,2 ,3 ]
Zoller, P. [1 ,2 ,3 ]
Genes, C. [1 ,2 ]
Ludwig, M. [4 ,5 ]
Marquardt, F. [4 ,5 ]
Treutlein, P. [6 ,7 ]
Ye, J. [3 ,8 ,9 ]
Kimble, H. J. [3 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantum Opt & Quantum Commun, A-6020 Innsbruck, Austria
[3] CALTECH, Norman Bridge Lab Phys 12 33, Pasadena, CA 91125 USA
[4] Univ Munich, Dept Phys, Ctr NanoSci, D-80333 Munich, Germany
[5] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[6] Univ Munich, Max Planck Inst Quantum Opt, D-80799 Munich, Germany
[7] Univ Munich, Dept Phys, D-80799 Munich, Germany
[8] Univ Colorado, Boulder, CO 80309 USA
[9] Natl Inst Stand & Technol, JILA, Boulder, CO 80309 USA
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 02期
关键词
THERMAL-CONDUCTIVITY;
D O I
10.1103/PhysRevA.81.023816
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In a recent publication [ K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, Phys. Rev. Lett. 103, 063005 ( 2009)] we have shown the possibility to achieve strong coupling of the quantized motion of a micron-sized mechanical system to the motion of a single trapped atom. In the proposed setup the coherent coupling between a SiN membrane and a single atom is mediated by the field of a high finesse cavity and can be much larger than the relevant decoherence rates. This makes the well-developed tools of cavity quantum electrodynamics with single atoms available in the realm of cavity optomechanics. In this article we elaborate on this scheme and provide detailed derivations and technical comments. Moreover, we give numerical as well as analytical results for a number of possible applications for transfer of squeezed or Fock states from atom to membrane as well as entanglement generation, taking full account of dissipation. In the limit of strong-coupling the preparation and verification of nonclassical states of a mesoscopic mechanical system is within reach.
引用
收藏
页数:17
相关论文
共 39 条
[1]  
[Anonymous], 2009, Physics, DOI DOI 10.1103/PHYSICS.2.40
[2]   Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box [J].
Armour, AD ;
Blencowe, MP ;
Schwab, KC .
PHYSICAL REVIEW LETTERS, 2002, 88 (14) :148301/1-148301/4
[3]   Decoherence and recoherence in a vibrating rf SQUID [J].
Buks, Eyal ;
Blencowe, M. P. .
PHYSICAL REVIEW B, 2006, 74 (17)
[4]   LASER COOLING OF TRAPPED IONS IN A STANDING WAVE [J].
CIRAC, JI ;
BLATT, R ;
ZOLLER, P ;
PHILLIPS, WD .
PHYSICAL REVIEW A, 1992, 46 (05) :2668-2681
[5]   Parametric Normal-Mode Splitting in Cavity Optomechanics [J].
Dobrindt, J. M. ;
Wilson-Rae, I. ;
Kippenberg, T. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (26)
[6]   A comparison of entanglement measures [J].
Eisert, J ;
Plenio, MB .
JOURNAL OF MODERN OPTICS, 1999, 46 (01) :145-154
[7]  
Gardiner C. W., 2004, QUANTUM NOISE
[8]   Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption [J].
Genes, C. ;
Ritsch, H. ;
Vitali, D. .
PHYSICAL REVIEW A, 2009, 80 (06)
[9]   Emergence of atom-light-mirror entanglement inside an optical cavity [J].
Genes, C. ;
Vitali, D. ;
Tombesi, P. .
PHYSICAL REVIEW A, 2008, 77 (05)
[10]   Ultracold mechanical resonators coupled to atoms in an optical lattice [J].
Geraci, Andrew A. ;
Kitching, John .
PHYSICAL REVIEW A, 2009, 80 (03)