Lattice Dirac fermions on a simplicial Riemannian manifold

被引:18
作者
Brower, Richard C. [1 ]
Weinberg, Evan S. [1 ]
Fleming, George T. [2 ]
Gasbarro, Andrew D. [2 ]
Raben, Timothy G. [3 ,4 ]
Tan, Chung-I [3 ]
机构
[1] Boston Univ, Boston, MA 02215 USA
[2] Yale Univ, Sloane Lab, New Haven, CT 06520 USA
[3] Brown Univ, Providence, RI 02912 USA
[4] Univ Kansas, Lawrence, KS 66047 USA
关键词
BACKGROUND FIELD CALCULATIONS; QUANTUM-GRAVITY; REGGE CALCULUS; RELATIVITY; OPERATOR;
D O I
10.1103/PhysRevD.95.114510
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The lattice Dirac equation is formulated on a simplicial complex which approximates a smooth Riemann manifold by introducing a lattice vierbein on each site and a lattice spin connection on each link. Care is taken so the construction applies to any smooth D-dimensional Riemannian manifold that permits a spin connection. It is tested numerically in 2D for the projective sphere S-2 in the limit of an increasingly refined sequence of triangles. The eigenspectrum and eigenvectors are shown to converge rapidly to the exact result in the continuum limit. In addition comparison is made with the continuum Ising conformal field theory on S-2. Convergence is tested for the two point, <epsilon(x(1))epsilon(x(2))>, and the four point, <sigma(x(1))epsilon(x(2))epsilon(x(3))sigma(x(4))>, correlators for the energy, epsilon(x) = i (psi) over bar (x)psi(x), and twist operators, sigma(x), respectively.
引用
收藏
页数:25
相关论文
共 37 条
[1]  
[Anonymous], ARXIVHEPTH0212134
[2]  
[Anonymous], 1966, Algebraic Topology
[3]  
[Anonymous], 2008, ANAL FINITE ELEMENT
[4]  
Appelquist T., 2013, COMMUNITY SUMMER STU
[5]   GEOMETRIC FERMIONS [J].
BANKS, T ;
DOTHAN, Y ;
HORN, D .
PHYSICS LETTERS B, 1982, 117 (06) :413-417
[6]   Spectrum of the Dirac operator coupled to two-dimensional quantum gravity [J].
Bogacz, L ;
Burda, Z ;
Petersen, C ;
Petersson, B .
NUCLEAR PHYSICS B, 2002, 630 (1-2) :339-358
[7]   Riemann normal coordinates, smooth lattices and numerical relativity [J].
Brewin, L .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (10) :3085-3120
[8]   Riemann normal coordinate expansions using Cadabra [J].
Brewin, Leo .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (17)
[9]   Lattice radial quantization: 3D Ising [J].
Brower, R. C. ;
Fleming, G. T. ;
Neuberger, H. .
PHYSICS LETTERS B, 2013, 721 (4-5) :299-305
[10]  
Brower R.C., ARXIV160101367