Tuning the pore structure and surface chemistry of porous graphene for CO2 capture and H2 storage

被引:11
作者
Xia, Kaisheng [1 ,2 ]
Xiong, Rui [1 ]
Chen, Yiren [1 ]
Liu, Darui [3 ]
Tian, Qifeng [4 ]
Gao, Qiang [1 ,2 ]
Han, Bo [1 ,2 ]
Zhou, Chenggang [1 ]
机构
[1] China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Zhejiang Inst, Hangzhou 311305, Peoples R China
[3] Shenhua Zhungeer Energy Resource Comprehens Dev C, Erdos 017100, Inner Mongolia, Peoples R China
[4] Wuhan Inst Technol, Sch Chem Engn & Pharm, Wuhan 430205, Peoples R China
基金
中国国家自然科学基金;
关键词
Surface chemistry; Pore structure; Gas adsorption; Porous graphene; Activation; OXYGEN FUNCTIONAL-GROUPS; ACTIVATED CARBONS; ADSORPTION; SUPERCAPACITORS; PERFORMANCE; ADSORBENTS; NANOSHEETS; GRAPHITE; STRATEGY; CAPACITY;
D O I
10.1016/j.colsurfa.2021.126640
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Porous graphene materials (PGMs) have been fabricated through CO2 and KOH activation of thermal exfoliated graphite oxide. The CO2 activated PGMs (CPGMs) display a three-dimensional morphology with hierarchical pore structure, while the KOH activated PGMs (KPGMs) exhibit a two-dimensional sheet morphology with numerous micropores and small mesopores. By adjusting the activation conditions, their specific surface areas and pore volumes can be easily tuned in a wide range. Moreover, the as-prepared PGMs show various surface chemistry, in which the CPGMs own a high content of quinone and carbonyl groups, and the KPGMs possess abundant hydroxyl groups. Gas adsorption experiments demonstrate that CO2 and H-2 uptakes of PGMs are affected by both their pore structure and surface chemistry. Notably, the KPGMs-7 has the highest CO2 uptake of 17.87 wt% (4.06 mmol g(-1)) at 273 K and 1 bar and H2 uptake of 2.41 wt% (11.88 mmol g(-1)) at 77 K and 1 bar, respectively.
引用
收藏
页数:8
相关论文
共 55 条
[1]   A family of microporous carbons prepared via a simple metal salt carbonization route with high selectivity for exceptional gravimetric and volumetric post-combustion CO2 capture [J].
Adeniran, Beatrice ;
Masika, Eric ;
Mokaya, Robert .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (35) :14696-14710
[2]   Novel Nitrogen-Doped Porous Carbons Derived from Graphene for Effective CO2 Capture [J].
An, Liying ;
Liu, Shenfang ;
Wang, Linlin ;
Wu, Jiayi ;
Wu, Zhenzhen ;
Ma, Changdan ;
Yu, Qiankun ;
Hu, Xin .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (08) :3349-3358
[3]   Hydrogen Storage in Porous Materials: Status, Milestones, and Challenges [J].
Berenguer-Murcia, Angel ;
Pablo Marco-Lozar, Juan ;
Cazorla-Amoros, Diego .
CHEMICAL RECORD, 2018, 18 (7-8) :900-912
[4]   Measuring the degree of stacking order in graphite by Raman spectroscopy [J].
Cancado, L. G. ;
Takai, K. ;
Enoki, T. ;
Endo, M. ;
Kim, Y. A. ;
Mizusaki, H. ;
Speziali, N. L. ;
Jorio, A. ;
Pimenta, M. A. .
CARBON, 2008, 46 (02) :272-275
[5]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[6]   Oxygen functional groups improve the energy storage performances of graphene electrochemical supercapacitors [J].
Cao, Hailiang ;
Peng, Xing ;
Zhao, Min ;
Liu, Peizhi ;
Xu, Bingshe ;
Guo, Junjie .
RSC ADVANCES, 2018, 8 (06) :2858-2865
[7]   High-performance supercapacitors based on a graphene-activated carbon composite prepared by chemical activation [J].
Chen, Yao ;
Zhang, Xiong ;
Zhang, Haitao ;
Sun, Xianzhong ;
Zhang, Dacheng ;
Ma, Yanwei .
RSC ADVANCES, 2012, 2 (20) :7747-7753
[8]   Hydrogen adsorption characteristics of magnesium combustion derived graphene at 77 and 293 K [J].
Cunning, Benjamin V. ;
Pyle, Darryl S. ;
Merritt, Christopher R. ;
Brown, Christopher L. ;
Webb, Colin J. ;
Gray, Evan MacA. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (12) :6783-6788
[9]   From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future [J].
Dreyer, Daniel R. ;
Ruoff, Rodney S. ;
Bielawski, Christopher W. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (49) :9336-9344
[10]   Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions [J].
Fernandez-Merino, M. J. ;
Guardia, L. ;
Paredes, J. I. ;
Villar-Rodil, S. ;
Solis-Fernandez, P. ;
Martinez-Alonso, A. ;
Tascon, J. M. D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (14) :6426-6432