A preconditioned block Arnoldi method for large scale Lyapunov and algebraic Riccati equations

被引:2
|
作者
Bouhamidi, A. [1 ]
Hached, M. [2 ]
Jbilou, K. [1 ]
机构
[1] Univ Littoral, LMPA, 50 Rue F Buisson,BP 699, F-62228 Calais, France
[2] Univ Lille 1, IUT Dept Chim, F-59655 Villeneuve Dascq, France
关键词
ADI; Block Arnoldi; Block Krylov subspaces; Low-rank approximations; Lyapunov equation; Newton; Riccati; Stein equation; KRYLOV SUBSPACE METHODS; MATRIX EQUATIONS;
D O I
10.1007/s10898-015-0317-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the present paper, we propose a preconditioned Newton-Block Arnoldi method for solving large continuous time algebraic Riccati equations. Such equations appear in control theory, model reduction, circuit simulation amongst other problems. At each step of the Newton process, we solve a large Lyapunov matrix equation with a low rank right hand side. These equations are solved by using the block Arnoldi process associated with a preconditioner based on the alternating direction implicit iteration method. We give some theoretical results and report numerical tests to show the effectiveness of the proposed approach.
引用
收藏
页码:19 / 32
页数:14
相关论文
共 50 条
  • [41] Solving algebraic Riccati equations on parallel computers using Newton's method with exact line search
    Benner, P
    Byers, R
    Quintana-Ortí, ES
    Quintana-Ortí, G
    PARALLEL COMPUTING, 2000, 26 (10) : 1345 - 1368
  • [42] ON THE PARAMETER SELECTION PROBLEM IN THE NEWTON-ADI ITERATION FOR LARGE-SCALE RICCATI EQUATIONS
    Benner, Peter
    Mena, Hermann
    Saak, Jens
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 29 : 136 - 149
  • [43] A multigrid method to solve large scale Sylvester equations
    Grasedyck, Lars
    Hackbusch, Wolfgang
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (03) : 870 - 894
  • [44] On some numerical methods for solving large-scale differential T-Lyapunov matrix equations
    Sadek, Lakhlifa
    Alaoui, Hamad Talibi
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 577 - 590
  • [45] A MINIMAL RESIDUAL NORM METHOD FOR LARGE-SCALE SYLVESTER MATRIX EQUATIONS
    Agoujil, Said
    Bentbib, Abdeslem H.
    Jbilou, Khalide
    Sadek, El Mostafa
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 43 : 45 - 59
  • [46] The constant solution method for solving large-scale differential Sylvester matrix equations with time invariant coefficients
    Bouhamidi, Abderrahman
    Elbouyahyaoui, Lakhdar
    Heyouni, Mohammed
    NUMERICAL ALGORITHMS, 2024, 96 (01) : 449 - 488
  • [47] The constant solution method for solving large-scale differential Sylvester matrix equations with time invariant coefficients
    Abderrahman Bouhamidi
    Lakhdar Elbouyahyaoui
    Mohammed Heyouni
    Numerical Algorithms, 2024, 96 : 449 - 488
  • [48] Model reduction in large scale MIMO dynamical systems via the block Lanczos method
    Heyouni, M.
    Jbilou, K.
    Messaoudi, A.
    Tabaa, K.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2008, 27 (02) : 211 - 236
  • [49] Model reduction in large scale MIMO dynamical systems via the block Lanczos method
    Heyouni, M.
    Jbilou, K.
    Messaoudi, Abdou
    Tabaa, Khalid
    Computational and Applied Mathematics, 2008, 27 (02) : 211 - 236
  • [50] A Tangential Block Lanczos Method for Model Reduction of Large-Scale First and Second Order Dynamical Systems
    Jbilou, K.
    Kaouane, Y.
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) : 513 - 536