Hafnium carbide protective layer coatings on carbon/carbon composites deposited with a vacuum plasma spray coating method

被引:86
作者
Yoo, Hee-Il [1 ]
Kim, Ho Seok [1 ]
Hong, Bong Guen [1 ,2 ]
Sihn, Ihn-Cheol [3 ]
Lim, Kwang-Hyeon [3 ]
Lim, Byung-Joo [3 ]
Moon, Se Youn [1 ,2 ]
机构
[1] Chonbuk Natl Univ, High Enthalpy Plasma Res Ctr, 546 Bongdong Ro, Wanju Gun 565901, Jeollabuk Do, South Korea
[2] Chonbuk Natl Univ, Dept Quantum Syst Engn, 567 Baekje Daero, Jeonju 561756, Jeollabuk Do, South Korea
[3] Dai Yang Ind Co, 24-33 Dunteo Ro, Ichon Si 467811, Kyungki Do, South Korea
基金
新加坡国家研究基金会;
关键词
Hafnium carbide coating; UHTC protective layer; Protection of carbon composite; Vacuum plasma spray coating; ABLATION BEHAVIOR; OXIDATION; MICROSTRUCTURE;
D O I
10.1016/j.jeurceramsoc.2016.01.032
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A pure hafnium-carbide (HfC) coating layer was deposited onto carbon/carbon (CC) composites using a vacuum plasma spray system (VPS). By introducing a SiC buffer layer, we successfully integrated C.C composites with a 110-mu m-thick protective coating layer of HfC. Compared to the conventional chemical vapor deposition process, the HfC coating process by VPS showed increments in the growth rate, thickness, and hardness. The growth behavior and morphology of HfC coatings were investigated by FE-SEM, EDX, and XRD. In addition, the thermal ablation test results showed that the HfC coating layer perfectly protected the C.C layer from thermal ablation and oxidation. Consequently, we expect that this ultra-high temperature ceramic coating method, and the subsequent microstructure that it creates, can be widely applied to improve the thermal shock and oxidation resistance of materials under ultra-high temperature environments. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1581 / 1587
页数:7
相关论文
共 27 条
[1]  
Barret C.S., 1980, Structure of Metals: Crystallographic Methods, Principles, and Data
[2]   THE FUTURE OF CARBON-CARBON COMPOSITES [J].
FITZER, E .
CARBON, 1987, 25 (02) :163-190
[3]  
GILL BJ, 1986, MATER SCI TECH SER, V2, P207, DOI 10.1179/026708386790123396
[4]   Mechanical and physical behavior of spark plasma sintered ZrC-ZrB2-SiC composites [J].
Guo, Shu-Qi ;
Kagawa, Yutaka ;
Nishimura, Toshiyuki ;
Chung, Dowhan ;
Yang, Jenn-Ming .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2008, 28 (06) :1279-1285
[5]   OXIDATION AND ABLATION OF 3D CARBON-CARBON COMPOSITE AT UP TO 3000-DEGREES-C [J].
HAN, JC ;
HE, XD ;
DU, SY .
CARBON, 1995, 33 (04) :473-478
[6]  
Haynes JA, 1996, SURF COAT TECH, V86, P102, DOI 10.1016/S0257-8972(96)02985-4
[7]   PLASMA-SPRAYED COATINGS [J].
HERMAN, H .
SCIENTIFIC AMERICAN, 1988, 259 (03) :112-117
[8]  
Herman H., 1996, METALLURGICAL CERAMI, pp261
[9]   Failure modes of vacuum plasma spray tungsten coating created on carbon fibre composites under thermal loads [J].
Hirai, T. ;
Bekris, N. ;
Coad, J. P. ;
Grisolia, C. ;
Linke, J. ;
Maier, H. ;
Matthews, G. F. ;
Philipps, V. ;
Wessel, E. .
JOURNAL OF NUCLEAR MATERIALS, 2009, 392 (01) :40-44
[10]   CVD AND CVR SILICON-BASED FUNCTIONALLY GRADIENT COATINGS ON C-C COMPOSITES [J].
KOWBEL, W ;
WITHERS, JC .
CARBON, 1995, 33 (04) :415-426