Identification of 4D Lu hyper-chaotic system using identical systems synchronization and fractional adaptation law

被引:5
作者
Abedini, Mohammad [1 ]
Gomroki, Mehdi [1 ]
Salarieh, Hassan [1 ]
Meghdari, Ali [1 ]
机构
[1] Sharif Univ Technol, Ctr Excellence Design Robot & Automat, Dept Mech Engn, Tehran, Iran
关键词
System identification; Chaos synchronization; Fractional order dynamics; Lu hyper-chaotic system; Adaptive control; PARAMETER-IDENTIFICATION; ADAPTIVE SYNCHRONIZATION;
D O I
10.1016/j.apm.2014.03.020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the parameters of a 4D Lu hyper-chaotic system are identified via synchronization of two identical systems. Unknown parameters of the drive system are identified by an adaptive method. Stability of the closed-loop system with one state feedback controller is studied by using the Lyapunov theorem. Also the convergence of the parameters to their true values is proved. Then a fractional adaptation law is applied to reduce the time of parameter convergence. Finally the results of both integer and fractional methods are compared. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:4652 / 4661
页数:10
相关论文
共 36 条
[1]   Identification of fractional chaotic system parameters [J].
Al-Assaf, Y ;
El-Khazali, R ;
Ahmad, W .
CHAOS SOLITONS & FRACTALS, 2004, 22 (04) :897-905
[2]   Application of the differential transformation method for the solution of the hyperchaotic Rossler system [J].
Al-Sawalha, M. Mossa ;
Noorani, M. S. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) :1509-1514
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]   Fractional ordered Liu system with time-delay [J].
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (08) :2178-2191
[5]   Effects on the chaotic system of fractional order PI α controller [J].
Celik, Vedat ;
Demir, Yakup .
NONLINEAR DYNAMICS, 2010, 59 (1-2) :143-159
[6]   Parameters identification and synchronization of chaotic systems based upon adaptive control [J].
Chen, Shihua ;
Lü, Jinhu .
Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 299 (04) :353-358
[7]   Algorithms for the fractional calculus: A selection of numerical methods [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD ;
Luchko, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (6-8) :743-773
[8]   Adaptive synchronization of a hyperchaotic system with uncertain parameter [J].
Elabbasy, E. M. ;
Agiza, H. N. ;
El-Dessoky, M. M. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (05) :1133-1142
[9]   Chaos synchronization and parameter identification for loudspeaker systems [J].
Ge, ZM ;
Leu, WY .
CHAOS SOLITONS & FRACTALS, 2004, 21 (05) :1231-1247
[10]   Synchronization of the unified chaotic system and application in secure communication [J].
Grzybowski, J. M. V. ;
Rafikov, M. ;
Balthazar, J. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (06) :2793-2806