LEARNING A TEMPORALLY INVARIANT REPRESENTATION FOR VISUAL TRACKING

被引:0
作者
Ma, Chao [1 ,2 ]
Yang, Xiaokang [1 ]
Zhang, Chongyang [1 ]
Yang, Ming-Hsuan [2 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China
[2] Univ Calif, Merced, CA USA
来源
2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2015年
基金
美国国家科学基金会;
关键词
temporal invariance; feature learning; correlation filters; object tracking; OBJECT;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose to learn temporally invariant features from a large number of image sequences to represent objects for visual tracking. These features are trained on a convolutional neural network with temporal invariance constraints and robust to diverse motion transformations. We employ linear correlation filters to encode the appearance templates of targets and perform the tracking task by searching for the maximum responses at each frame. The learned filters are updated online and adapt to significant appearance changes during tracking. Extensive experimental results on challenging sequences show that the proposed algorithm performs favorably against state-of-the-art methods in terms of efficiency, accuracy, and robustness.
引用
收藏
页码:857 / 861
页数:5
相关论文
共 50 条
[41]   A Review of Visual Tracking with Deep Learning [J].
Feng, Xiaoyu ;
Mei, Wei ;
Hu, Dashuai .
PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRIAL ENGINEERING (AIIE 2016), 2016, 133 :231-234
[42]   Linearization to Nonlinear Learning for Visual Tracking [J].
Ma, Bo ;
Hu, Hongwei ;
Shen, Jianbing ;
Zhang, Yuping ;
Porikli, Fatih .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4400-4407
[43]   Robust visual tracking algorithm based on bidirectional sparse representation [J].
Wang Bao-Xian ;
Zhao Bao-Jun ;
Tang Lin-Bo ;
Wang Shui-Gen ;
Wu Jing-Hui .
ACTA PHYSICA SINICA, 2014, 63 (23) :234201
[44]   Visual object tracking using Gaussian process and sparse representation [J].
Gozlou, Samira Ghareh ;
Gozlou, Morteza Ghareh .
INTERNATIONAL JOURNAL OF APPLIED PATTERN RECOGNITION, 2015, 2 (02) :128-141
[45]   Structured Sparse Representation Visual Tracking Using Bayes Classifier [J].
Li, Weiguang ;
Hou, Yueen ;
Rong, Aiqiong ;
Quan, Sibo ;
Lou, Huidong ;
Huang, Aihua .
2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, :3036-3041
[46]   Robust Visual Tracking Based on Gabor Feature and Sparse Representation [J].
Li, Weiguang ;
Hou, Yueen ;
Lou, Huidong ;
Ye, Guoqiang .
2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2012), 2012,
[47]   Robust Visual Tracking Using Flexible Structured Sparse Representation [J].
Bai, Tianxiang ;
Li, Youfu .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2014, 10 (01) :538-547
[48]   Fast Generative Approach Based on Sparse Representation for Visual Tracking [J].
Wibowo, Suryo Adhi ;
Lee, Hansoo ;
Kim, Eun Kyeong ;
Kim, Sungshin .
2016 JOINT 8TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 17TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2016, :778-783
[49]   Visual Tracking Via Kernel Sparse Representation With Multikernel Fusion [J].
Wang, Lingfeng ;
Yan, Hongping ;
Lv, Ke ;
Pan, Chunhong .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014, 24 (07) :1132-1141
[50]   SCRM: self-correlated representation model for visual tracking [J].
Jiang, Shengqin ;
Lu, Xiaobo ;
Cheng, Fengna .
SOFT COMPUTING, 2020, 24 (03) :2187-2199