LEARNING A TEMPORALLY INVARIANT REPRESENTATION FOR VISUAL TRACKING

被引:0
作者
Ma, Chao [1 ,2 ]
Yang, Xiaokang [1 ]
Zhang, Chongyang [1 ]
Yang, Ming-Hsuan [2 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China
[2] Univ Calif, Merced, CA USA
来源
2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2015年
基金
美国国家科学基金会;
关键词
temporal invariance; feature learning; correlation filters; object tracking; OBJECT;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose to learn temporally invariant features from a large number of image sequences to represent objects for visual tracking. These features are trained on a convolutional neural network with temporal invariance constraints and robust to diverse motion transformations. We employ linear correlation filters to encode the appearance templates of targets and perform the tracking task by searching for the maximum responses at each frame. The learned filters are updated online and adapt to significant appearance changes during tracking. Extensive experimental results on challenging sequences show that the proposed algorithm performs favorably against state-of-the-art methods in terms of efficiency, accuracy, and robustness.
引用
收藏
页码:857 / 861
页数:5
相关论文
共 50 条
[31]   Compact discriminative object representation via weakly supervised learning for real-time visual tracking [J].
Shen, Weichao ;
Wu, Yuwei ;
Jia, Yunde .
IET COMPUTER VISION, 2017, 11 (07) :585-595
[32]   Deep Metric Learning for Visual Tracking [J].
Hu, Junlin ;
Lu, Jiwen ;
Tan, Yap-Peng .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2016, 26 (11) :2056-2068
[33]   A survey on online learning for visual tracking [J].
Mohammed Y. Abbass ;
Ki-Chul Kwon ;
Nam Kim ;
Safey A. Abdelwahab ;
Fathi E. Abd El-Samie ;
Ashraf A. M. Khalaf .
The Visual Computer, 2021, 37 :993-1014
[34]   Deep Learning in Visual Tracking: A Review [J].
Jiao, Licheng ;
Wang, Dan ;
Bai, Yidong ;
Chen, Puhua ;
Liu, Fang .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (09) :5497-5516
[35]   Geometric Hypergraph Learning for Visual Tracking [J].
Du, Dawei ;
Qi, Honggang ;
Wen, Longyin ;
Tian, Qi ;
Huang, Qingming ;
Lyu, Siwei .
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (12) :4182-4195
[36]   A survey on online learning for visual tracking [J].
Abbass, Mohammed Y. ;
Kwon, Ki-Chul ;
Kim, Nam ;
Abdelwahab, Safey A. ;
EI-Samie, Fathi E. Abd ;
Khalaf, Ashraf A. M. .
VISUAL COMPUTER, 2021, 37 (05) :993-1014
[37]   Online similarity learning for visual tracking [J].
Yi, Sihua ;
Jiang, Nan ;
Feng, Bin ;
Wang, Xinggang ;
Liu, Wenyu .
INFORMATION SCIENCES, 2016, 364 :33-50
[38]   Learning Saliency-Aware Correlation Filters for Visual Tracking [J].
Wang, Yanbo ;
Wang, Fasheng ;
Wang, Chang ;
Sun, Fuming ;
He, Jianjun .
COMPUTER JOURNAL, 2022, 65 (07) :1846-1859
[39]   Joint Channel Reliability and Correlation Filters Learning for Visual Tracking [J].
Du, Fei ;
Liu, Peng ;
Zhao, Wei ;
Tang, Xianglong .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (06) :1625-1638
[40]   Linearization to Nonlinear Learning for Visual Tracking [J].
Ma, Bo ;
Hu, Hongwei ;
Shen, Jianbing ;
Zhang, Yuping ;
Porikli, Fatih .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4400-4407