LEARNING A TEMPORALLY INVARIANT REPRESENTATION FOR VISUAL TRACKING

被引:0
作者
Ma, Chao [1 ,2 ]
Yang, Xiaokang [1 ]
Zhang, Chongyang [1 ]
Yang, Ming-Hsuan [2 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China
[2] Univ Calif, Merced, CA USA
来源
2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2015年
基金
美国国家科学基金会;
关键词
temporal invariance; feature learning; correlation filters; object tracking; OBJECT;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose to learn temporally invariant features from a large number of image sequences to represent objects for visual tracking. These features are trained on a convolutional neural network with temporal invariance constraints and robust to diverse motion transformations. We employ linear correlation filters to encode the appearance templates of targets and perform the tracking task by searching for the maximum responses at each frame. The learned filters are updated online and adapt to significant appearance changes during tracking. Extensive experimental results on challenging sequences show that the proposed algorithm performs favorably against state-of-the-art methods in terms of efficiency, accuracy, and robustness.
引用
收藏
页码:857 / 861
页数:5
相关论文
共 50 条
[21]   Visual object tracking by correlation filters and online learning [J].
Zhang, Xin ;
Xia, Gui-Song ;
Lu, Qikai ;
Shen, Weiming ;
Zhang, Liangpei .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 140 :77-89
[22]   Unsupervised Deep Representation Learning for Real-Time Tracking [J].
Wang, Ning ;
Zhou, Wengang ;
Song, Yibing ;
Ma, Chao ;
Liu, Wei ;
Li, Houqiang .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (02) :400-418
[23]   Visual tracking using spatio-temporally nonlocally regularized correlation filter [J].
Zhang, Kaihua ;
Li, Xuejun ;
Song, Huihui ;
Liu, Qingshan ;
Lian, Wei .
PATTERN RECOGNITION, 2018, 83 :185-195
[24]   Generalized lP-regularized representation for visual tracking [J].
Kong, Jun ;
Liu, Chenhua ;
Jiang, Min ;
Wu, Jiao ;
Tian, Shengwei ;
Lai, Huicheng .
NEUROCOMPUTING, 2016, 213 :155-161
[25]   Affine hull based target representation for visual tracking [J].
Wang, Jun ;
Wang, Hanzi ;
Zhao, Wan-Lei .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2015, 30 :266-276
[26]   Visual tracking based on hierarchical framework and sparse representation [J].
Yi, Yang ;
Cheng, Yang ;
Xu, Chuping .
MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (13) :16267-16289
[27]   Sparse representation combined with context information for visual tracking [J].
Feng, Ping ;
Xu, Chunyan ;
Zhao, Zhiqiang ;
Liu, Fang ;
Yuan, Caihong ;
Wang, Tianjiang ;
Duan, Kui .
NEUROCOMPUTING, 2017, 225 :92-102
[28]   Visual tracking based on the estimation of representation residual matrix [J].
Chen Dian-Bing ;
Zhu Ming ;
Gao Wen ;
Wang Hui-Li ;
Hang, Yang .
ACTA PHYSICA SINICA, 2016, 65 (19)
[29]   Robust Visual Tracking Based on Relaxed Target Representation [J].
Wang, Yuanyun .
PATTERN RECOGNITION AND IMAGE ANALYSIS, 2019, 29 (03) :415-424
[30]   Compact discriminative object representation via weakly supervised learning for real-time visual tracking [J].
Shen, Weichao ;
Wu, Yuwei ;
Jia, Yunde .
IET COMPUTER VISION, 2017, 11 (07) :585-595