Bounds on quantum multiple-parameter estimation with Gaussian state

被引:47
作者
Gao, Yang [1 ]
Lee, Hwang [2 ,3 ]
机构
[1] Xinyang Normal Univ, Dept Phys, Xinyang 464000, Henan, Peoples R China
[2] Louisiana State Univ, Hearne Inst Theoret Phys, Baton Rouge, LA 70803 USA
[3] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
关键词
OBSERVABLES;
D O I
10.1140/epjd/e2014-50560-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the quantum Cramer-Rao bounds on the joint multiple-parameter estimation with the Gaussian state as a probe. We derive the explicit right logarithmic derivative and symmetric logarithmic derivative operators in such a situation. We compute the corresponding quantum Fisher information matrices, and find that they can be fully expressed in terms of the mean displacement and covariance matrix of the Gaussian state. Finally, we give some examples to show the utility of our analytical results.
引用
收藏
页数:7
相关论文
共 22 条
[1]   Quantum Metrology with Two-Mode Squeezed Vacuum: Parity Detection Beats the Heisenberg Limit [J].
Anisimov, Petr M. ;
Raterman, Gretchen M. ;
Chiruvelli, Aravind ;
Plick, William N. ;
Huver, Sean D. ;
Lee, Hwang ;
Dowling, Jonathan P. .
PHYSICAL REVIEW LETTERS, 2010, 104 (10)
[2]  
[Anonymous], 2013, ARXIV13033682
[3]   Optimal Quantum Estimation of the Unruh-Hawking Effect [J].
Aspachs, Mariona ;
Adesso, Gerardo ;
Fuentes, Ivette .
PHYSICAL REVIEW LETTERS, 2010, 105 (15)
[4]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[5]   Tradeoff in simultaneous quantum-limited phase and loss estimation in interferometry [J].
Crowley, Philip J. D. ;
Datta, Animesh ;
Barbieri, Marco ;
Walmsley, I. A. .
PHYSICAL REVIEW A, 2014, 89 (02)
[6]   Optimal estimation of joint parameters in phase space [J].
Genoni, M. G. ;
Paris, M. G. A. ;
Adesso, G. ;
Nha, H. ;
Knight, P. L. ;
Kim, M. S. .
PHYSICAL REVIEW A, 2013, 87 (01)
[7]   Quantum-enhanced measurements: Beating the standard quantum limit [J].
Giovannetti, V ;
Lloyd, S ;
Maccone, L .
SCIENCE, 2004, 306 (5700) :1330-1336
[8]  
Helstrom C. W, 1976, Quantum Detection and Estimation Theory
[9]   NONCOMMUTING OBSERVABLES IN QUANTUM DETECTION AND ESTIMATION THEORY [J].
HELSTROM, CW ;
KENNEDY, RS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (01) :16-24
[10]  
Holevo A. S., 1982, Probabilistic and statistical aspect of quantum theory