Accurate Estimate of the Critical Exponent ν for Self-Avoiding Walks via a Fast Implementation of the Pivot Algorithm

被引:165
作者
Clisby, Nathan [1 ]
机构
[1] Univ Melbourne, ARC Ctr Excellence Math & Stat Complex Syst, Dept Math & Stat, Melbourne, Vic 3010, Australia
关键词
DIMENSIONS;
D O I
10.1103/PhysRevLett.104.055702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a fast implementation of the pivot algorithm for self-avoiding walks, which we use to obtain large samples of walks on the cubic lattice of up to 33 x 10(6) steps. Consequently the critical exponent nu for three-dimensional self-avoiding walks is determined to great accuracy; the final estimate is nu = 0.587 597(7). The method can be adapted to other models of polymers with short-range interactions, on the lattice or in the continuum.
引用
收藏
页数:4
相关论文
共 19 条
[1]  
[Anonymous], 1993, The Self-Avoiding Walk
[2]  
[Anonymous], 1998, ALGORITHMS C
[3]   Peculiar scaling of self-avoiding walk contacts [J].
Baiesi, M ;
Orlandini, E ;
Stella, AL .
PHYSICAL REVIEW LETTERS, 2001, 87 (07) :70602-1
[4]  
Belohorec P., 1997, THESIS U GUELPH
[5]  
CLISBY N, UNPUB, P10401
[6]   Self-avoiding walk enumeration via the lace expansion [J].
Clisby, Nathan ;
Liang, Richard ;
Slade, Gordon .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (36) :10973-11017
[7]   Critical exponents of the N-vector model [J].
Guida, R ;
Zinn-Justin, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (40) :8103-8121
[8]  
Guttman Antonin., 1984, SIGMOD Conference, P47, DOI [10.1145/971697.602266, DOI 10.1145/971697.602266, DOI 10.1145/602259.602266]
[9]  
Guttmann A. J., 1989, Phase transitions and critical phenomena
[10]   SELF-AVOIDING WALK IN 5 OR MORE DIMENSIONS .1. THE CRITICAL-BEHAVIOR [J].
HARA, T ;
SLADE, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :101-136