CapsGaNet: Deep Neural Network Based on Capsule and GRU for Human Activity Recognition

被引:19
作者
Sun, Xiaojie [1 ]
Xu, Hongji [1 ]
Dong, Zheng [1 ]
Shi, Leixin [1 ]
Liu, Qiang [1 ]
Li, Juan [1 ]
Li, Tiankuo [1 ]
Fan, Shidi [1 ]
Wang, Yuhao [1 ]
机构
[1] Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Peoples R China
来源
IEEE SYSTEMS JOURNAL | 2022年 / 16卷 / 04期
关键词
Feature extraction; Deep learning; Convolutional neural networks; Activity recognition; Convolution; Sensors; Kernel; Aggressive activity; deep learning; human activity recognition (HAR); spatiotemporal feature; WEARABLE SENSOR;
D O I
10.1109/JSYST.2022.3153503
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The advances in deep learning with the ability to automatically extract advanced features have achieved a bright prospect for human activity recognition (HAR). However, the traditional HAR methods still have the deficiencies of incomplete feature extraction, which may lead to incorrect recognition results. To resolve the above problem, a novel framework for spatiotemporal multi-feature extraction on HAR called CapsGaNet is propounded, which is based on capsule and gated recurrent units (GRU) with attention mechanisms. The proposed framework involves a spatial feature extraction layer consisting of capsule blocks, a temporal feature extraction layer consisting of GRU with attention mechanisms, and an output layer. At the same time, considering the actual demands for recognizing aggressive activities in some specific scenarios like smart prison, we constructed a daily and aggressive activity dataset (DAAD). Moreover, based on the acceleration characteristics of aggressive activity, a threshold-based approach for aggressive activity detection is propounded to meet the needs of high real-time and low computational complexity in prison scenarios. The experiments are performed on the wireless sensor data mining (WISDM) dataset and the DAAD dataset, and the results verify that the propounded CapsGaNet could effectually improve the recognition accuracy. The proposed threshold-based approach for aggressive activity detection provides a more effective HAR way by using smart sensor devices in smart prison scenarios.
引用
收藏
页码:5845 / 5855
页数:11
相关论文
共 50 条
  • [41] InnoHAR: A Deep Neural Network for Complex Human Activity Recognition
    Xu, Cheng
    Chai, Duo
    He, Jie
    Zhang, Xiaotong
    Duan, Shihong
    IEEE ACCESS, 2019, 7 : 9893 - 9902
  • [42] A Multi-Section Hierarchical Deep Neural Network Model for Time Series Classification: Applied to Wearable Sensor-Based Human Activity Recognition
    Ghorrati, Zahra
    Esmaeili, Ahmad
    Matson, Eric T.
    IEEE ACCESS, 2024, 12 : 137851 - 137869
  • [43] Optimal Deep Convolutional Neural Network with Pose Estimation for Human Activity Recognition
    Nandagopal, S.
    Karthy, G.
    Oliver, A. Sheryl
    Subha, M.
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2023, 44 (02): : 1719 - 1733
  • [44] Smartphones based Online Activity Recognition for Indoor Localization using Deep Convolutional Neural Network
    Yang, Jun
    Cheng, Kai
    Chen, Jianfan
    Zhou, Baoding
    Li, Qingquan
    PROCEEDINGS OF 5TH IEEE CONFERENCE ON UBIQUITOUS POSITIONING, INDOOR NAVIGATION AND LOCATION-BASED SERVICES (UPINLBS), 2018, : 293 - 299
  • [45] A fuzzy convolutional attention-based GRU network for human activity recognition
    Khodabandelou, Ghazaleh
    Moon, Huiseok
    Amirat, Yacine
    Mohammed, Samer
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 118
  • [46] HActivityNet: A Deep Convolutional Neural Network for Human Activity Recognition
    Khaliluzzaman, Md
    Sayem, Md Abu Bakar Siddiq
    Misbah, Lutful Kader
    EMITTER-INTERNATIONAL JOURNAL OF ENGINEERING TECHNOLOGY, 2021, 9 (02) : 357 - 376
  • [47] Wearable Sport Activity Classification Based on Deep Convolutional Neural Network
    Hsu, Yu-Liang
    Chang, Hsing-Cheng
    Chiu, Yung-Jung
    IEEE ACCESS, 2019, 7 : 170199 - 170212
  • [48] A Hybrid Network Based on Dense Connection and Weighted Feature Aggregation for Human Activity Recognition
    Lv, Tianqi
    Wang, Xiaojuan
    Jin, Lei
    Xiao, Yabo
    Song, Mei
    IEEE ACCESS, 2020, 8 : 68320 - 68332
  • [49] A Parameter Estimation and Deep Learning Hybrid Extraction Network for Multidirectional Human Activity Recognition Based on mmWave Radar
    Ding, Congzhang
    Guo, Shisheng
    Cui, Guolong
    Yang, Xiaobo
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 5769 - 5782
  • [50] Human motion activity recognition and pattern analysis using compressed deep neural networks
    Kumari, Navita
    Yadagani, Amulya
    Behera, Basudeba
    Semwal, Vijay Bhaskar
    Mohanty, Somya
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2024, 12 (01)