Hausdorff dimension and the Weil-Petersson extension to quasifuchsian space

被引:22
作者
Bridgeman, Martin [1 ]
机构
[1] Boston Coll, Dept Math, Chestnut Hill, MA 02167 USA
基金
美国国家科学基金会;
关键词
KLEINIAN-GROUPS;
D O I
10.2140/gt.2010.14.799
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a natural nonnegative two-form G on quasifuchsian space that extends the Weil-Petersson metric on Teichmuller space. We describe completely the positive definite locus of G, showing that it is a positive definite metric off the fuchsian diagonal of quasifuchsian space and is only zero on the "pure-bending" tangent vectors to the fuchsian diagonal. We show that G is equal to the pullback of the pressure metric from dynamics. We use the properties of G to prove that at any critical point of the Hausdorff dimension function on quasifuchsian space the Hessian of the Hausdorff dimension function must be positive definite on at least a half-dimensional subspace of the tangent space. In particular this implies that Hausdorff dimension has no local maxima on quasifuchsian space.
引用
收藏
页码:799 / 831
页数:33
相关论文
共 19 条
[11]  
MASKIT B, 1988, GRUND MATH WISSENSCH, V287
[12]   Thermodynamics, dimension and the Weil-Petersson metric [J].
McMullen, Curtis T. .
INVENTIONES MATHEMATICAE, 2008, 173 (02) :365-425
[13]  
NICHOLLS P. J., 1989, London Math. Soc. Lecture Note Ser., V143, DOI [10.1017/CBO9780511600678, DOI 10.1017/CBO9780511600678]
[14]  
Ruelle D., 1982, Ergodic Theory Dynam. Syst, V2, P99, DOI [10.1017/S0143385700009603, DOI 10.1017/S0143385700009603]
[15]   DYNAMICAL-SYSTEMS WITH SPECIFICATION PROPERTY [J].
SIGMUND, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 190 (463) :285-299
[16]   ENTROPY, HAUSDORFF MEASURES OLD AND NEW, AND LIMIT-SETS OF GEOMETRICALLY FINITE KLEINIAN-GROUPS [J].
SULLIVAN, D .
ACTA MATHEMATICA, 1984, 153 (3-4) :259-277
[17]  
Sullivan D., 1979, Inst. Hautes Etudes Sci. Publ. Math., V50, P171
[18]  
THURSTON WP, 1979, PRINCETON U MATH DEP
[19]  
WOLPERT SA, 1986, J DIFFER GEOM, V23, P143