Hausdorff dimension and the Weil-Petersson extension to quasifuchsian space

被引:22
作者
Bridgeman, Martin [1 ]
机构
[1] Boston Coll, Dept Math, Chestnut Hill, MA 02167 USA
基金
美国国家科学基金会;
关键词
KLEINIAN-GROUPS;
D O I
10.2140/gt.2010.14.799
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a natural nonnegative two-form G on quasifuchsian space that extends the Weil-Petersson metric on Teichmuller space. We describe completely the positive definite locus of G, showing that it is a positive definite metric off the fuchsian diagonal of quasifuchsian space and is only zero on the "pure-bending" tangent vectors to the fuchsian diagonal. We show that G is equal to the pullback of the pressure metric from dynamics. We use the properties of G to prove that at any critical point of the Hausdorff dimension function on quasifuchsian space the Hessian of the Hausdorff dimension function must be positive definite on at least a half-dimensional subspace of the tangent space. In particular this implies that Hausdorff dimension has no local maxima on quasifuchsian space.
引用
收藏
页码:799 / 831
页数:33
相关论文
共 19 条
[1]  
[Anonymous], 1990, AST RISQUE
[2]  
Bers L., 1960, Bull. Amer. Math. Soc., V66, P94, DOI 10.1090/S0002-9904-1960-10413-2
[3]  
Bonahon F., 1996, Ann. Fac. Sci. Toulouse Math., V5, P233
[4]   PERIODIC ORBITS FOR HYPERBOLIC FLOWS [J].
BOWEN, R .
AMERICAN JOURNAL OF MATHEMATICS, 1972, 94 (01) :1-&
[5]  
Bowen Rufus, 1979, I HAUTES ETUDES SCI, P11
[6]  
Bridgeman M, 2005, COMMUN ANAL GEOM, V13, P561
[7]   An extension of the Weil-Petersson metric to quasi-Fuchsian space [J].
Bridgeman, Martin J. ;
Taylor, Edward C. .
MATHEMATISCHE ANNALEN, 2008, 341 (04) :927-943
[8]   EARTHQUAKES ARE ANALYTIC [J].
KERCKHOFF, SP .
COMMENTARII MATHEMATICI HELVETICI, 1985, 60 (01) :17-30
[9]  
LIVSIC A, 1972, MATH USSR IZV, V6
[10]   GEOMETRY OF FINITELY GENERATED KLEINIAN GROUPS [J].
MARDEN, A .
ANNALS OF MATHEMATICS, 1974, 99 (03) :383-462