Hausdorff dimension and the Weil-Petersson extension to quasifuchsian space

被引:22
作者
Bridgeman, Martin [1 ]
机构
[1] Boston Coll, Dept Math, Chestnut Hill, MA 02167 USA
来源
GEOMETRY & TOPOLOGY | 2010年 / 14卷 / 02期
基金
美国国家科学基金会;
关键词
KLEINIAN-GROUPS;
D O I
10.2140/gt.2010.14.799
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a natural nonnegative two-form G on quasifuchsian space that extends the Weil-Petersson metric on Teichmuller space. We describe completely the positive definite locus of G, showing that it is a positive definite metric off the fuchsian diagonal of quasifuchsian space and is only zero on the "pure-bending" tangent vectors to the fuchsian diagonal. We show that G is equal to the pullback of the pressure metric from dynamics. We use the properties of G to prove that at any critical point of the Hausdorff dimension function on quasifuchsian space the Hessian of the Hausdorff dimension function must be positive definite on at least a half-dimensional subspace of the tangent space. In particular this implies that Hausdorff dimension has no local maxima on quasifuchsian space.
引用
收藏
页码:799 / 831
页数:33
相关论文
共 19 条