Quality control and whole-gland, zonal and lesion annotations for the PROSTATEx challenge public dataset

被引:60
作者
Cuocolo, Renato [1 ,2 ]
Stanzione, Arnaldo [3 ]
Castaldo, Anna [3 ]
De Lucia, Davide Raffaele [3 ]
Imbriaco, Massimo [3 ]
机构
[1] Univ Naples Federico II, Dept Clin Med & Surg, Naples, Italy
[2] Univ Naples Federico II, Dept Elect Engn & Informat Technol, Lab Augmented Real Hlth Monitoring, ARHeMLab, Naples, Italy
[3] Univ Naples Federico II, Dept Adv Biomed Sci, Via S Pansini 5, I-80131 Naples, Italy
关键词
Radiomics; Machine learning; Public imaging dataset; Segmentation; Prostate MRI;
D O I
10.1016/j.ejrad.2021.109647
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Radiomic features are promising quantitative parameters that can be extracted from medical images and employed to build machine learning predictive models. However, generalizability is a key concern, encouraging the use of public image datasets. We performed a quality assessment of the PROSTATEx training dataset and provide publicly available lesion, whole-gland, and zonal anatomy segmentation masks. Method: Two radiology residents and two experienced board-certified radiologists reviewed the 204 prostate MRI scans (330 lesions) included in the training dataset. The quality of provided lesion coordinate was scored using the following scale: 0 = perfectly centered, 1 = within lesion, 2 = within the prostate without lesion, 3 = outside the prostate. All clearly detectable lesions were segmented individually slice-by-slice on T2-weighted and apparent diffusion coefficient images. With the same methodology, volumes of interest including the whole gland, transition, and peripheral zones were annotated. Results: Of the 330 available lesion identifiers, 3 were duplicates (1%). From the remaining, 218 received score = 0, 74 score = 1, 31 score = 2 and 4 score = 3. Overall, 299 lesions were verified and segmented. Independently of lesion coordinate score and other issues (e.g., lesion coordinates falling outside DICOM images, artifacts etc.), the whole prostate gland and zonal anatomy were also manually annotated for all cases. Conclusion: While several issues were encountered evaluating the original PROSTATEx dataset, the improved quality and availability of lesion, whole-gland and zonal segmentations will increase its potential utility as a common benchmark in prostate MRI radiomics.
引用
收藏
页数:5
相关论文
共 19 条
[1]   PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images [J].
Armato, Samuel G., II ;
Huisman, Henkjan ;
Drukker, Karen ;
Hadjiiski, Lubomir ;
Kirby, Justin S. ;
Petrick, Nicholas ;
Redmond, George ;
Giger, Maryellen L. ;
Cha, Kenny ;
Mamonov, Artem ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan .
JOURNAL OF MEDICAL IMAGING, 2018, 5 (04)
[2]   Editor's Note: Publication of AI Research in Radiology [J].
Bluemke, David A. .
RADIOLOGY, 2018, 289 (03) :579-580
[3]   A multicentre assessment of prostate MRI quality and compliance with UK and international standards [J].
Burn, P. R. ;
Freeman, S. J. ;
Andreou, A. ;
Burns-Cox, N. ;
Persad, R. ;
Barrett, T. .
CLINICAL RADIOLOGY, 2019, 74 (11) :894.e19-894.e25
[4]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[5]   Machine learning for the identification of clinically significant prostate cancer on MRI: a meta-analysis [J].
Cuocolo, Renato ;
Cipullo, Maria Brunella ;
Stanzione, Arnaldo ;
Romeo, Valeria ;
Green, Roberta ;
Cantoni, Valeria ;
Ponsiglione, Andrea ;
Ugga, Lorenzo ;
Imbriaco, Massimo .
EUROPEAN RADIOLOGY, 2020, 30 (12) :6877-6887
[6]   Machine Learning in oncology: A clinical appraisal [J].
Cuocolo, Renato ;
Caruso, Martina ;
Perillo, Teresa ;
Ugga, Lorenzo ;
Petretta, Mario .
CANCER LETTERS, 2020, 481 :55-62
[7]   Prostate MRI technical parameters standardization: A systematic review on adherence to PI-RADSv2 acquisition protocol [J].
Cuocolo, Renato ;
Stanzione, Arnaldo ;
Ponsiglione, Andrea ;
Verde, Francesco ;
Ventimiglia, Antonio ;
Romeo, Valeria ;
Petretta, Mario ;
Imbriaco, Massimo .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 120
[8]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[9]   Machine Learning Applications in Head and Neck Radiation Oncology: Lessons From Open-Source Radiomics Challenges [J].
Elhalawani, Hesham ;
Lin, Timothy A. ;
Volpe, Stefania ;
Mohamed, Abdallah S. R. ;
White, Aubrey L. ;
Zafereo, James ;
Wong, Andrew J. ;
Berends, Joel E. ;
AboHashem, Shady ;
Williams, Bowman ;
Aymard, Jeremy M. ;
Kanwar, Aasheesh ;
Perni, Subha ;
Rock, Crosby D. ;
Cooksey, Luke ;
Campbell, Shauna ;
Yang, Pei ;
Khahn Nguyen ;
Ger, Rachel B. ;
Cardenas, Carlos E. ;
Fave, Xenia J. ;
Sansone, Carlo ;
Piantadosi, Gabriele ;
Marrone, Stefano ;
Liu, Rongjie ;
Huang, Chao ;
Yu, Kaixian ;
Li, Tengfei ;
Yu, Yang ;
Zhang, Youyi ;
Zhu, Hongtu ;
Morris, Jeffrey S. ;
Baladandayuthapani, Veerabhadran ;
Shumway, John W. ;
Ghosh, Alakonanda ;
Poehlmann, Andrei ;
Phoulady, Hady A. ;
Goyal, Vibhas ;
Canahuate, Guadalupe ;
Marai, G. Elisabeta ;
Vock, David ;
Lai, Stephen Y. ;
Mackin, Dennis S. ;
Court, Laurence E. ;
Freymann, John ;
Farahani, Keyvan ;
Kaplathy-Cramer, Jayashree ;
Fuller, Clifton D. .
FRONTIERS IN ONCOLOGY, 2018, 8
[10]   Imaging Facilities' Adherence to PI-RADS v2 Minimum Technical Standards for the Performance of Prostate MRI [J].
Esses, Steven J. ;
Taneja, Samir S. ;
Rosenkrantz, Andrew B. .
ACADEMIC RADIOLOGY, 2018, 25 (02) :188-195