Multiphoton Sub-Band-Gap Photoconductivity and Critical Transition Temperature in Type-II GaSb Quantum-Dot Intermediate-Band Solar Cells

被引:26
作者
Hwang, Jinyoung [1 ]
Lee, Kyusang [1 ]
Teran, Alan [1 ]
Forrest, Stephen [1 ]
Phillips, Jamie D. [1 ]
Martin, Andrew J. [2 ]
Millunchick, Joanna [2 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
来源
PHYSICAL REVIEW APPLIED | 2014年 / 1卷 / 05期
关键词
VOLTAGE;
D O I
10.1103/PhysRevApplied.1.051003
中图分类号
O59 [应用物理学];
学科分类号
摘要
Multiphoton transitions in GaSb/GaAs quantum-dot intermediate-band solar cells are investigated at variable temperature and excitation intensity. A transition temperature is observed that corresponds to the crossover between quantum-dot intraband transitions dominated by thermal escape due to infrared photogeneration. The transition temperature follows an Arrhenius relation with an activation energy of 220 meV that corresponds to the energy barrier observed by holes in the quantum dots. The transition temperature is in the range of 160-225 K for the temperature range studied, significantly higher than observed in previous type-I quantum-dot systems. These results illustrate the potential of type-II structures with deep confinement potentials and strong intraband absorption for future intermediate-band solar cells and quantum devices.
引用
收藏
页数:5
相关论文
共 26 条
  • [1] Low temperature characterization of the photocurrent produced by two-photon transitions in a quantum dot intermediate band solar cell
    Antolin, E.
    Marti, A.
    Stanley, C. R.
    Fanner, C. D.
    Canovas, E.
    Lopez, N.
    Linares, P. G.
    Luque, A.
    [J]. THIN SOLID FILMS, 2008, 516 (20) : 6919 - 6923
  • [2] Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell
    Antolin, E.
    Marti, A.
    Farmer, C. D.
    Linares, P. G.
    Hernandez, E.
    Sanchez, A. M.
    Ben, T.
    Molina, S. I.
    Stanley, C. R.
    Luque, A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 108 (06)
  • [3] Enhanced infrared photo-response from GaSb/GaAs quantum ring solar cells
    Carrington, P. J.
    Wagener, M. C.
    Botha, J. R.
    Sanchez, A. M.
    Krier, A.
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (23)
  • [4] Type II GaSb/GaAs quantum dot/ring stacks with extended photoresponse for efficient solar cells
    Carrington, Peter James
    Mahajumi, Abu Syed
    Wagener, Magnus C.
    Botha, Johannes Reinhardt
    Zhuang, Qian
    Krier, Anthony
    [J]. PHYSICA B-CONDENSED MATTER, 2012, 407 (10) : 1493 - 1496
  • [5] Type II broken band heterostructure quantum dot to obtain a material for the intermediate band solar cell
    Cuadra, L
    Martí, A
    Luque, A
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 14 (1-2) : 162 - 165
  • [6] Carrier extraction behaviour in type II GaSb/GaAs quantum ring solar cells
    Fujita, Hiromi
    James, Juanita
    Carrington, Peter J.
    Marshall, Andrew R. J.
    Krier, Anthony
    Wagener, Magnus C.
    Botha, Johannes R.
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2014, 29 (03)
  • [7] InAs/GaAsSb quantum dot solar cells
    Hatch, Sabina
    Wu, Jiang
    Sablon, Kimberly
    Phu Lam
    Tang, Mingchu
    Jiang, Qi
    Liu, Huiyun
    [J]. OPTICS EXPRESS, 2014, 22 (09): : A679 - A685
  • [8] HU WG, 2013, P 2013 IEEE 39 PHOT, P1021
  • [9] Effect of strain compensation on quantum dot enhanced GaAs solar cells
    Hubbard, S. M.
    Cress, C. D.
    Bailey, C. G.
    Raffaelle, R. P.
    Bailey, S. G.
    Wilt, D. M.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (12)
  • [10] Hwang J, 2013, IEEE PHOT SPEC CONF, P3191, DOI 10.1109/PVSC.2013.6745131