Existence, uniqueness and attractivity properties of positive complete trajectories for non-autonomous reaction-diffusion problems

被引:0
作者
Rodriguez-Bernal, Anibal [1 ]
Vidal-Lopez, Alejandro [1 ]
机构
[1] Univ Complutense Madrid, Dept Matemat Aplicada, E-28040 Madrid, Spain
关键词
logistic equations; pull back attraction; forward behaviour;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give conditions for the existence of a unique positive complete trajectories for non-autonomous reaction-diffusion equations. Also, attraction properties of the unique complete trajectory is obtained in a pullback sense and also forward in time. As an example, a non-autonomous logistic equation is considered.
引用
收藏
页码:537 / 567
页数:31
相关论文
共 20 条
[1]   REMARKS ON SUBLINEAR ELLIPTIC-EQUATIONS [J].
BREZIS, H ;
OSWALD, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (01) :55-64
[2]  
Chafee N., 1974, Applicable Analysis, V4, P17, DOI 10.1080/00036817408839081
[3]  
Chepyzhov V. V., 2002, American Mathematical Society Colloquium Publications
[4]  
Chueshov I, 2002, LECT NOTES MATH, V1779, P1
[5]   Order-preserving skew-product flows and nonautonomous parabolic systems [J].
Chueshov, I .
ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) :185-205
[6]  
Fife, 1979, MATH ASPECTS REACTIN, V28
[7]   Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation [J].
Fraile, JM ;
Medina, PK ;
LopezGomez, J ;
Merino, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 127 (01) :295-319
[8]  
Hale J.K., 1988, MATH SURVEYS MONOGRA, V25
[9]  
Hess P., 1991, Pitman Res. Notes in Mathematics
[10]   Bifurcation from zero of a complete trajectory for nonautonomous logistic PDES [J].
Langa, JA ;
Robinson, JC ;
Suárez, A .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (08) :2663-2669