The Community Inversion Framework v1.0: a unified system for atmospheric inversion studies

被引:29
作者
Berchet, Antoine [1 ]
Sollum, Espen [2 ]
Thompson, Rona L. [2 ]
Pison, Isabelle [1 ]
Thanwerdas, Joel [1 ]
Broquet, Gregoire [1 ]
Chevallier, Frederic [1 ]
Aalto, Tuula [3 ]
Berchet, Adrien [14 ]
Bergamaschi, Peter [4 ]
Brunner, Dominik [5 ]
Engelen, Richard [6 ]
Fortems-Cheiney, Audrey [1 ]
Gerbig, Christoph [7 ]
Zwaaftink, Christine D. Groot [2 ]
Haussaire, Jean-Matthieu [5 ]
Henne, Stephan [5 ]
Houweling, Sander [8 ]
Karstens, Ute [9 ]
Kutsch, Werner L. [10 ]
Luijkx, Ingrid T. [11 ]
Monteil, Guillaume [9 ]
Palmer, Paul, I [12 ]
van Peet, Jacob C. A. [8 ]
Peters, Wouter [11 ,13 ]
Peylin, Philippe [1 ]
Potier, Elise [1 ]
Roedenbeck, Christian [7 ]
Saunois, Marielle [1 ]
Scholze, Marko [9 ]
Tsuruta, Aki [3 ]
Zhao, Yuanhong [1 ]
机构
[1] UVSQ, Lab Sci Climat & Environm, CEA, CNRS, Gif Sur Yvette, France
[2] Norwegian Inst Air Res NILU, Kjeller, Norway
[3] Finnish Meteorol Inst FMI, Helsinki, Finland
[4] European Commiss Joint Res Ctr, Ispra, Varese, Italy
[5] Swiss Fed Labs Mat Sci & Technol Empa, Dubendorf, Switzerland
[6] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England
[7] Max Planck Inst Biogeochem, Jena, Germany
[8] Vrije Univ Amsterdam, Dept Earth Sci Earth & Climate Cluster, Amsterdam, Netherlands
[9] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden
[10] Integrated Carbon Observat Syst ICOS ERIC, Helsinki, Finland
[11] Wageningen Univ & Res, Meteorol & Air Qual Grp, Wageningen, Netherlands
[12] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3FF, Midlothian, Scotland
[13] Univ Groningen, Ctr Isotope Res, Groningen, Netherlands
[14] Univ Poitiers, Inst Pprime UPR 3346, UPR 3346, CNRS,ENSMA, Bat H2,11 Blvd Marie & Pierre Curie,TSA 51124, F-86073 Poitiers, France
基金
欧盟地平线“2020”;
关键词
PARTICLE DISPERSION MODEL; DATA ASSIMILATION; TRANSPORT MODEL; CO2; EMISSIONS; KALMAN SMOOTHER; SURFACE FLUXES; TECHNICAL NOTE; CARBON-CYCLE; ENSEMBLE; METHANE;
D O I
10.5194/gmd-14-5331-2021
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Atmospheric inversion approaches are expected to play a critical role in future observation-based monitoring systems for surface fluxes of greenhouse gases (GHGs), pollutants and other trace gases. In the past decade, the research community has developed various inversion software, mainly using variational or ensemble Bayesian optimization methods, with various assumptions on uncertainty structures and prior information and with various atmospheric chemistry-transport models. Each of them can assimilate some or all of the available observation streams for its domain area of interest: flask samples, in situ measurements or satellite observations. Although referenced in peer-reviewed publications and usually accessible across the research community, most systems are not at the level of transparency, flexibility and accessibility needed to provide the scientific community and policy makers with a comprehensive and robust view of the uncertainties associated with the inverse estimation of GHG and reactive species fluxes. Furthermore, their development, usually carried out by individual research institutes, may in the future not keep pace with the increasing scientific needs and technical possibilities. We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is primarily a programming protocol to allow various inversion bricks to be exchanged among researchers. In practice, the ensemble of bricks makes a flexible, transparent and open-source Python-based tool to estimate the fluxes of various GHGs and reactive species both at the global and regional scales. It will allow for running different atmospheric transport models, different observation streams and different data assimilation approaches. This adaptability will allow for a comprehensive assessment of uncertainty in a fully consistent framework. We present here the main structure and functionalities of the system, and we demonstrate how it operates in a simple academic case.
引用
收藏
页码:5331 / 5354
页数:24
相关论文
共 112 条
[41]   Characterization of uncertainties in atmospheric trace gas inversions using hierarchical Bayesian methods [J].
Ganesan, A. L. ;
Rigby, M. ;
Zammit-Mangion, A. ;
Manning, A. J. ;
Prinn, R. G. ;
Fraser, P. J. ;
Harth, C. M. ;
Kim, K. -R. ;
Krummel, P. B. ;
Li, S. ;
Muehle, J. ;
O'Doherty, S. J. ;
Park, S. ;
Salameh, P. K. ;
Steele, L. P. ;
Weiss, R. F. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (08) :3855-3864
[42]   Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ [J].
Gaubert, Benjamin ;
Emmons, Louisa K. ;
Raeder, Kevin ;
Tilmes, Simone ;
Miyazaki, Kazuyuki ;
Arellano, Avelino F., Jr. ;
Elguindi, Nellie ;
Granier, Claire ;
Tang, Wenfu ;
Barre, Jerome ;
Worden, Helen M. ;
Buchholz, Rebecca R. ;
Edwards, David P. ;
Franke, Philipp ;
Anderson, Jeffrey L. ;
Saunois, Marielle ;
Schroeder, Jason ;
Woo, Jung-Hun ;
Simpson, Isobel J. ;
Blake, Donald R. ;
Meinardi, Simone ;
Wennberg, Paul O. ;
Crounse, John ;
Teng, Alex ;
Kim, Michelle ;
Dickerson, Russell R. ;
He, Hao ;
Ren, Xinrong ;
Pusede, Sally E. ;
Diskin, Glenn S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (23) :14617-14647
[43]   SOME NUMERICAL EXPERIMENTS WITH VARIABLE-STORAGE QUASI-NEWTON ALGORITHMS [J].
GILBERT, JC ;
LEMARECHAL, C .
MATHEMATICAL PROGRAMMING, 1989, 45 (03) :407-435
[44]   TransCom 3 CO2 inversion intercomparison:: 1.: Annual mean control results and sensitivity to transport and prior flux information [J].
Gurney, KR ;
Law, RM ;
Denning, AS ;
Rayner, PJ ;
Baker, D ;
Bousquet, P ;
Bruhwiler, L ;
Chen, YH ;
Ciais, P ;
Fan, SM ;
Fung, IY ;
Gloor, M ;
Heimann, M ;
Higuchi, K ;
John, J ;
Kowalczyk, E ;
Maki, T ;
Maksyutov, S ;
Peylin, P ;
Prather, M ;
Pak, BC ;
Sarmiento, J ;
Taguchi, S ;
Takahashi, T ;
Yuen, CW .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2003, 55 (02) :555-579
[45]  
Hanna S.R., 2013, Handbook on atmospheric diffusion, V17, P673, DOI [10.2172/5591108, DOI 10.2172/5591108]
[46]   Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling [J].
Henne, Stephan ;
Brunner, Dominik ;
Oney, Brian ;
Leuenberger, Markus ;
Eugster, Werner ;
Bamberger, Ines ;
Meinhardt, Frank ;
Steinbacher, Martin ;
Emmenegger, Lukas .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (06) :3683-3710
[47]   A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements [J].
Houweling, S. ;
Krol, M. ;
Bergamaschi, P. ;
Frankenberg, C. ;
Dlugokencky, E. J. ;
Morino, I. ;
Notholt, J. ;
Sherlock, V. ;
Wunch, D. ;
Beck, V. ;
Gerbig, C. ;
Chen, H. ;
Kort, E. A. ;
Rockmann, T. ;
Aben, I. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (08) :3991-4012
[48]   Global inverse modeling of CH4 sources and sinks: an overview of methods [J].
Houweling, Sander ;
Bergamaschi, Peter ;
Chevallier, Frederic ;
Heimann, Martin ;
Kaminski, Thomas ;
Krol, Maarten ;
Michalak, Anna M. ;
Patra, Prabir .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (01) :235-256
[49]   Iconic CO2 Time Series at Risk [J].
Houweling, Sander ;
Badawy, Bakr ;
Baker, David F. ;
Basu, Sourish ;
Belikov, Dmitry ;
Bergamaschi, Peter ;
Bousquet, Philippe ;
Broquet, Gregoire ;
Butler, Tim ;
Canadell, Josep G. ;
Chen, Jing ;
Chevallier, Frederic ;
Ciais, Philippe ;
Collatz, G. James ;
Denning, Scott ;
Engelen, Richard ;
Enting, Ian G. ;
Fischer, Marc L. ;
Fraser, Annemarie ;
Gerbig, Christoph ;
Gloor, Manuel ;
Jacobson, Andrew R. ;
Jones, Dylan B. A. ;
Heimann, Martin ;
Khalil, Aslam ;
Kaminski, Thomas ;
Kasibhatla, Prasad S. ;
Krakauer, Nir Y. ;
Krol, Maarten ;
Maki, Takashi ;
Maksyutov, Shamil ;
Manning, Andrew ;
Meesters, Antoon ;
Miller, John B. ;
Palmer, Paul I. ;
Patra, Prabir ;
Peters, Wouter ;
Peylin, Philippe ;
Poussi, Zegbeu ;
Prather, Michael J. ;
Randerson, James T. ;
Rockmann, Thomas ;
Rodenbeck, Christian ;
Sarmiento, Jorge L. ;
Schimel, David S. ;
Scholze, Marko ;
Schuh, Andrew ;
Suntharalingam, Parv ;
Takahashi, Taro ;
Turnbull, Jocelyn .
SCIENCE, 2012, 337 (6098) :1038-1040
[50]   Unified notation for data assimilation: Operational, sequential and variational [J].
Ide, K ;
Courtier, P ;
Ghil, M ;
Lorenc, AC .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 1997, 75 (1B) :181-189