The Community Inversion Framework v1.0: a unified system for atmospheric inversion studies

被引:29
作者
Berchet, Antoine [1 ]
Sollum, Espen [2 ]
Thompson, Rona L. [2 ]
Pison, Isabelle [1 ]
Thanwerdas, Joel [1 ]
Broquet, Gregoire [1 ]
Chevallier, Frederic [1 ]
Aalto, Tuula [3 ]
Berchet, Adrien [14 ]
Bergamaschi, Peter [4 ]
Brunner, Dominik [5 ]
Engelen, Richard [6 ]
Fortems-Cheiney, Audrey [1 ]
Gerbig, Christoph [7 ]
Zwaaftink, Christine D. Groot [2 ]
Haussaire, Jean-Matthieu [5 ]
Henne, Stephan [5 ]
Houweling, Sander [8 ]
Karstens, Ute [9 ]
Kutsch, Werner L. [10 ]
Luijkx, Ingrid T. [11 ]
Monteil, Guillaume [9 ]
Palmer, Paul, I [12 ]
van Peet, Jacob C. A. [8 ]
Peters, Wouter [11 ,13 ]
Peylin, Philippe [1 ]
Potier, Elise [1 ]
Roedenbeck, Christian [7 ]
Saunois, Marielle [1 ]
Scholze, Marko [9 ]
Tsuruta, Aki [3 ]
Zhao, Yuanhong [1 ]
机构
[1] UVSQ, Lab Sci Climat & Environm, CEA, CNRS, Gif Sur Yvette, France
[2] Norwegian Inst Air Res NILU, Kjeller, Norway
[3] Finnish Meteorol Inst FMI, Helsinki, Finland
[4] European Commiss Joint Res Ctr, Ispra, Varese, Italy
[5] Swiss Fed Labs Mat Sci & Technol Empa, Dubendorf, Switzerland
[6] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England
[7] Max Planck Inst Biogeochem, Jena, Germany
[8] Vrije Univ Amsterdam, Dept Earth Sci Earth & Climate Cluster, Amsterdam, Netherlands
[9] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden
[10] Integrated Carbon Observat Syst ICOS ERIC, Helsinki, Finland
[11] Wageningen Univ & Res, Meteorol & Air Qual Grp, Wageningen, Netherlands
[12] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3FF, Midlothian, Scotland
[13] Univ Groningen, Ctr Isotope Res, Groningen, Netherlands
[14] Univ Poitiers, Inst Pprime UPR 3346, UPR 3346, CNRS,ENSMA, Bat H2,11 Blvd Marie & Pierre Curie,TSA 51124, F-86073 Poitiers, France
基金
欧盟地平线“2020”;
关键词
PARTICLE DISPERSION MODEL; DATA ASSIMILATION; TRANSPORT MODEL; CO2; EMISSIONS; KALMAN SMOOTHER; SURFACE FLUXES; TECHNICAL NOTE; CARBON-CYCLE; ENSEMBLE; METHANE;
D O I
10.5194/gmd-14-5331-2021
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Atmospheric inversion approaches are expected to play a critical role in future observation-based monitoring systems for surface fluxes of greenhouse gases (GHGs), pollutants and other trace gases. In the past decade, the research community has developed various inversion software, mainly using variational or ensemble Bayesian optimization methods, with various assumptions on uncertainty structures and prior information and with various atmospheric chemistry-transport models. Each of them can assimilate some or all of the available observation streams for its domain area of interest: flask samples, in situ measurements or satellite observations. Although referenced in peer-reviewed publications and usually accessible across the research community, most systems are not at the level of transparency, flexibility and accessibility needed to provide the scientific community and policy makers with a comprehensive and robust view of the uncertainties associated with the inverse estimation of GHG and reactive species fluxes. Furthermore, their development, usually carried out by individual research institutes, may in the future not keep pace with the increasing scientific needs and technical possibilities. We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is primarily a programming protocol to allow various inversion bricks to be exchanged among researchers. In practice, the ensemble of bricks makes a flexible, transparent and open-source Python-based tool to estimate the fluxes of various GHGs and reactive species both at the global and regional scales. It will allow for running different atmospheric transport models, different observation streams and different data assimilation approaches. This adaptability will allow for a comprehensive assessment of uncertainty in a fully consistent framework. We present here the main structure and functionalities of the system, and we demonstrate how it operates in a simple academic case.
引用
收藏
页码:5331 / 5354
页数:24
相关论文
共 112 条
[1]   THE DATA ASSIMILATION RESEARCH TESTBED A Community Facility [J].
Anderson, Jeffrey ;
Hoar, Tim ;
Raeder, Kevin ;
Liu, Hui ;
Collins, Nancy ;
Torn, Ryan ;
Avellano, Avelino .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2009, 90 (09) :1283-1296
[2]   Statistical atmospheric inversion of local gas emissions by coupling the tracer release technique and local-scale transport modelling: a test case with controlled methane emissions [J].
Ars, Sebastien ;
Broquet, Gregoire ;
Kwok, Camille Yver ;
Roustan, Yelva ;
Wu, Lin ;
Arzoumanian, Emmanuel ;
Bousquet, Philippe .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2017, 10 (12) :5017-5037
[3]   A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of results [J].
Asefi-Najafabady, S. ;
Rayner, P. J. ;
Gurney, K. R. ;
McRobert, A. ;
Song, Y. ;
Coltin, K. ;
Huang, J. ;
Elvidge, C. ;
Baugh, K. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (17) :10,213-10,231
[4]   Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions [J].
Babenhauserheide, A. ;
Basu, S. ;
Houweling, S. ;
Peters, W. ;
Butz, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (17) :9747-9763
[5]   Assessment of an atmospheric transport model for annual inverse estimates of California greenhouse gas emissions [J].
Bagley, Justin E. ;
Jeong, Seongeun ;
Cui, Xinguang ;
Newman, Sally ;
Zhang, Jingsong ;
Priest, Chad ;
Campos-Pineda, Mixtli ;
Andrews, Arlyn E. ;
Bianco, Laura ;
Lloyd, Matthew ;
Lareau, Neil ;
Clements, Craig ;
Fischer, Marc L. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (03) :1901-1918
[6]   Adjoint of the global Eulerian-Lagrangian coupled atmospheric transport model (A-GELCA v1.0): development and validation [J].
Belikov, Dmitry A. ;
Maksyutov, Shamil ;
Yaremchuk, Alexey ;
Ganshin, Alexander ;
Kaminski, Thomas ;
Blessing, Simon ;
Sasakawa, Motoki ;
Gomez-Pelaez, Angel J. ;
Starchenko, Alexander .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (02) :749-764
[7]   Objectified quantification of uncertainties in Bayesian atmospheric inversions [J].
Berchet, A. ;
Pison, I. ;
Chevallier, F. ;
Bousquet, P. ;
Bonne, J-L ;
Paris, J-D .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (05) :1525-1546
[8]  
Berchet A., COMMUNITY INVERSION, P2021, DOI [10.5281/zenodo.5045730, DOI 10.5281/ZENODO.5045730]
[9]   Inverse modeling of European CH4 emissions 2001-2006 [J].
Bergamaschi, P. ;
Krol, M. ;
Meirink, J. F. ;
Dentener, F. ;
Segers, A. ;
van Aardenne, J. ;
Monni, S. ;
Vermeulen, A. T. ;
Schmidt, M. ;
Ramonet, M. ;
Yver, C. ;
Meinhardt, F. ;
Nisbet, E. G. ;
Fisher, R. E. ;
O'Doherty, S. ;
Dlugokencky, E. J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
[10]  
Bergamaschi P., 2018, 29276 EUR EN