Sensitivity to initial conditions of a d-dimensional long-range-interacting quartic Fermi-Pasta-Ulam model: Universal scaling

被引:29
作者
Bagchi, Debarshee [1 ]
Tsallis, Constantino [1 ,2 ,3 ]
机构
[1] Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil
[2] Natl Inst Sci & Technol Complex Syst, Rua Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil
[3] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA
关键词
STATISTICS; FIELD;
D O I
10.1103/PhysRevE.93.062213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a generalized d-dimensional Fermi-Pasta-Ulam model in the presence of long-range interactions, and perform a first-principle study of its chaos for d = 1,2,3 through large-scale numerical simulations. The nonlinear interaction is assumed to decay algebraically as d(ij)(-alpha) (alpha >= 0), {d(ij)} being the distances between N oscillator sites. Starting from random initial conditions we compute the maximal Lyapunov exponent lambda(max) as a function of N. Our N >> 1 results strongly indicate that lambda(max) remains constant and positive for alpha/d > 1 (implying strong chaos, mixing, and ergodicity), and that it vanishes like N (kappa) for 0 <= alpha/d < 1 (thus approaching weak chaos and opening the possibility of breakdown of ergodicity). The suitably rescaled exponent kappa exhibits universal scaling, namely that (d + 2)kappa depends only on alpha/d and, when alpha/d increases from zero to unity, it monotonically decreases from unity to zero, remaining so for all alpha/d > 1. The value alpha/d = 1 can therefore be seen as a critical point separating the ergodic regime from the anomalous one, kappa playing a role analogous to that of an order parameter. This scaling law is consistent with Boltzmann-Gibbs statistics for alpha/d > 1, and possibly with q statistics for 0 <= alpha/d < 1.
引用
收藏
页数:5
相关论文
共 38 条
[1]   Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC [J].
Aad, G. ;
Abbott, B. ;
Abdallah, J. ;
Abdelalim, A. A. ;
Abdesselam, A. ;
Abdinov, O. ;
Abi, B. ;
Abolins, M. ;
Abramowicz, H. ;
Abreu, H. ;
Acerbi, E. ;
Acharya, B. S. ;
Ackers, M. ;
Adams, D. L. ;
Addy, T. N. ;
Adelman, J. ;
Aderholz, M. ;
Adomeit, S. ;
Adragna, P. ;
Adye, T. ;
Aefsky, S. ;
Aguilar-Saavedra, J. A. ;
Aharrouche, M. ;
Ahlen, S. P. ;
Ahles, F. ;
Ahmad, A. ;
Ahsan, M. ;
Aielli, G. ;
Akdogan, T. ;
Akesson, T. P. A. ;
Akimoto, G. ;
Akimov, A. V. ;
Alam, M. S. ;
Alam, M. A. ;
Albrand, S. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Aleppo, M. ;
Alessandria, F. ;
Alexa, C. ;
Alexander, G. ;
Alexandre, G. ;
Alexopoulos, T. ;
Alhroob, M. ;
Aliev, M. ;
Alimonti, G. ;
Alison, J. ;
Aliyev, M. ;
Allport, P. P. ;
Allwood-Spiers, S. E. .
NEW JOURNAL OF PHYSICS, 2011, 13
[2]   Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at √s=7 TeV [J].
Abelev, B. ;
Adam, J. ;
Adamova, D. ;
Adare, A. M. ;
Aggarwal, M. M. ;
Rinella, G. Aglieri ;
Agocs, A. G. ;
Agostinelli, A. ;
Aguilar Salazar, S. ;
Ahammed, Z. ;
Masoodi, A. Ahmad ;
Ahmad, N. ;
Ahn, S. A. ;
Ahn, S. U. ;
Akindinov, A. ;
Aleksandrov, D. ;
Alessandro, B. ;
Alfaro Molina, R. ;
Alici, A. ;
Alkin, A. ;
Almaraz Avina, E. ;
Alme, J. ;
Alt, T. ;
Altini, V. ;
Altinpinar, S. ;
Altsybeev, I. ;
Andrei, C. ;
Andronic, A. ;
Anguelov, V. ;
Anielski, J. ;
Anson, C. ;
Anticic, T. ;
Antinori, F. ;
Antonioli, P. ;
Aphecetche, L. ;
Appelshaeuser, H. ;
Arbor, N. ;
Arcelli, S. ;
Arend, A. ;
Armesto, N. ;
Arnaldi, R. ;
Aronsson, T. ;
Arsene, I. C. ;
Arslandok, M. ;
Asryan, A. ;
Augustinus, A. ;
Averbeck, R. ;
Awes, T. C. ;
Aysto, J. ;
Azmi, M. D. .
PHYSICAL REVIEW D, 2012, 86 (11)
[3]   Measurement of neutral mesons in p plus p collisions at √s=200 GeV and scaling properties of hadron production [J].
Adare, A. ;
Afanasiev, S. ;
Aidala, C. ;
Ajitanand, N. N. ;
Akiba, Y. ;
Al-Bataineh, H. ;
Alexander, J. ;
Aoki, K. ;
Aphecetche, L. ;
Armendariz, R. ;
Aronson, S. H. ;
Asai, J. ;
Atomssa, E. T. ;
Averbeck, R. ;
Awes, T. C. ;
Azmoun, B. ;
Babintsev, V. ;
Bai, M. ;
Baksay, G. ;
Baksay, L. ;
Baldisseri, A. ;
Barish, K. N. ;
Barnes, P. D. ;
Bassalleck, B. ;
Basye, A. T. ;
Bathe, S. ;
Batsouli, S. ;
Baublis, V. ;
Baumann, C. ;
Bazilevsky, A. ;
Belikov, S. ;
Bennett, R. ;
Berdnikov, A. ;
Berdnikov, Y. ;
Bickley, A. A. ;
Boissevain, J. G. ;
Borel, H. ;
Boyle, K. ;
Brooks, M. L. ;
Buesching, H. ;
Bumazhnov, V. ;
Bunce, G. ;
Butsyk, S. ;
Camacho, C. M. ;
Campbell, S. ;
Chang, B. S. ;
Chang, W. C. ;
Charvet, J. -L. ;
Chernichenko, S. ;
Chiba, J. .
PHYSICAL REVIEW D, 2011, 83 (05)
[4]   Thermostatistics of Overdamped Motion of Interacting Particles [J].
Andrade, J. S., Jr. ;
da Silva, G. F. T. ;
Moreira, A. A. ;
Nobre, F. D. ;
Curado, E. M. F. .
PHYSICAL REVIEW LETTERS, 2010, 105 (26)
[5]  
[Anonymous], 2009, SPRINGER
[6]  
Anteneodo C, 2002, PHYS REV E, V65, DOI [10.1103/PhyaRevE.65.016210, 10.1103/PhysRevE.65.016210]
[7]   Breakdown of exponential sensitivity to initial conditions: Role of the range of interactions [J].
Anteneodo, C ;
Tsallis, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5313-5316
[8]   CLUSTERING AND RELAXATION IN HAMILTONIAN LONG-RANGE DYNAMICS [J].
ANTONI, M ;
RUFFO, S .
PHYSICAL REVIEW E, 1995, 52 (03) :2361-2374
[9]   Universal Threshold for the Dynamical Behavior of Lattice Systems with Long-Range Interactions [J].
Bachelard, Romain ;
Kastner, Michael .
PHYSICAL REVIEW LETTERS, 2013, 110 (17)
[10]   Nonextensive Pesin identity: Exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map [J].
Baldovin, F ;
Robledo, A .
PHYSICAL REVIEW E, 2004, 69 (04) :4-1