DEEP SELF-SUPERVISED LEARNING FOR FEW-SHOT HYPERSPECTRAL IMAGE CLASSIFICATION

被引:16
作者
Li, Yu [2 ]
Zhang, Lei [2 ]
Wei, Wei [1 ,2 ]
Zhang, Yanning [2 ]
机构
[1] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518057, Peoples R China
[2] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
基金
中国国家自然科学基金;
关键词
few-shot; deep learning; HSI classification; self-supervised task;
D O I
10.1109/IGARSS39084.2020.9323305
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the success of deep learning based methods for hyper-spectral imagery (HSI) classification, they demand amounts of labeled samples for training whereas the labeled samples in lots of applications are always insufficient due to the expensive manual annotation cost. To address this problem, we propose a two-branch deep learning based method for fewshot HSI classification, where two branches separately accomplish HSI classification in a cube-wise level and a cubepair level. With a shared feature extractor sub-network, the self-supervised knowledge contained in the cube-pair branch provides an effective way to regularize the original few-shot HSI classification branch (i.e., cube-wise branch) with limited labeled samples, which thus improves the performance of HSI classification. The superiority of the proposed method on few-shot HSI classification is demonstrated experimentally on two HSI benchmark datasets.
引用
收藏
页码:501 / 504
页数:4
相关论文
共 50 条
  • [21] Deep metric learning for few-shot image classification: A Review of recent developments
    Li, Xiaoxu
    Yang, Xiaochen
    Ma, Zhanyu
    Xue, Jing-Hao
    PATTERN RECOGNITION, 2023, 138
  • [22] Federated Learning and Optimization for Few-Shot Image Classification
    Zuo, Yi
    Chen, Zhenping
    Feng, Jing
    Fan, Yunhao
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 4649 - 4667
  • [23] Hyperspectral Image Few-Shot Classification Network With Brownian Distance Covariance
    Xin, Ziqi
    Wang, Leiquan
    Xu, Mingming
    Li, Zhongwei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [24] Self-Supervised Learning With a Dual-Branch ResNet for Hyperspectral Image Classification
    Li, Tianrui
    Zhang, Xiaohua
    Zhang, Shuhan
    Wang, Li
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [25] FEW-SHOT CLASS INCREMENTAL LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON CONSTANTLY UPDATED CLASSIFIER
    Zhao, Yuanyuan
    Ha, Lin
    Wang, Hongyu
    Ma, Xiaorui
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1376 - 1379
  • [26] SPN: Stable Prototypical Network for Few-Shot Learning-Based Hyperspectral Image Classification
    Pal, Debabrata
    Bundele, Valay
    Banerjee, Biplab
    Jeppu, Yogananda
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [27] Hyperspectral image super resolution using deep internal and self-supervised learning
    Liu, Zhe
    Han, Xian-Hua
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024, 9 (01) : 128 - 141
  • [28] Hyperspectral Image Few-Shot Classification Network Based on the Earth Mover's Distance
    Sun, Jiaxing
    Shen, Xiaobo
    Sun, Quansen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [29] Few-Shot Hyperspectral Image Classification Using Relational Generative Adversarial Network
    Wei, Wei
    Tong, Lei
    Guo, Baoqing
    Zhou, Jun
    Xiao, Chuangbai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [30] Dual class representation learning for few-shot image classification
    Singh, Pravendra
    Mazumder, Pratik
    KNOWLEDGE-BASED SYSTEMS, 2022, 238