Diagnostic Accuracy of Spectralis SD OCT Automated Macular Layers Segmentation to Discriminate Normal from Early Glaucomatous Eyes

被引:87
|
作者
Pazos, Marta [1 ,2 ,3 ]
Anna Dyrda, Agnieszka [1 ,4 ]
Biarnes, Marc [3 ]
Gomez, Alicia [5 ]
Martin, Carlos [4 ,5 ]
Mora, Clara [1 ]
Fatti, Gianluca [1 ]
Anton, Alfonso [1 ,2 ,5 ,6 ]
机构
[1] Univ Pompeu Fabra, Hosp Esperanca, Dept Ophthalmol, Parc Salut Mar,San Josep Muntanya 12, Barcelona 08024, Spain
[2] Inst Mar Invest Med, Barcelona, Spain
[3] Ctr Med Teknon, Inst Macula, Barcelona, Spain
[4] Inst Catala Retina, Dept Retina, Barcelona, Spain
[5] Inst Catala Retina, Dept Glaucoma, Barcelona, Spain
[6] Univ Int Catalunya, Dept Ophthalmol, Barcelona, Spain
关键词
NERVE-FIBER LAYER; OPTICAL COHERENCE TOMOGRAPHY; GANGLION-CELL COMPLEX; THICKNESS MEASUREMENT; ATROPHY; HEAD; ABILITY; DISC;
D O I
10.1016/j.ophtha.2017.03.044
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To evaluate the accuracy of the macular retinal layer segmentation software of the Spectralis spectral-domain (SD) optical coherence tomography (OCT) device (Heidelberg Engineering, Inc., Heidelberg, Germany) to discriminate between healthy and early glaucoma (EG) eyes. Design: Prospective, cross-sectional study. Participants: Forty EG eyes and 40 healthy controls were included. Methods: All participants were examined using the standard posterior pole and the peripapillary retinal nerve fiber layer (pRNFL) protocols of the Spectralis OCT device. Using an Early Treatment Diagnostic Retinopathy Study circle at the macular level, the automated retinal segmentation software was applied to determine thicknesses of the following parameters: total retinal thickness, inner retinal layer (IRL), macular retinal nerve fiber layer (mRNFL), macular ganglion cell layer (mGCL), macular inner plexiform layer (mIPL), macular inner nuclear layer (mINL), macular outer plexiform layer (mOPL), macular outer nuclear layer (mONL), photoreceptors (PR), and retinal pigmentary epithelium (RPE). The ganglion cell complex (GCC) was determined by adding the mRNFL, mGCL, and mIPL parameters and the ganglion cell layereinner plexiform layer (mGCLIPL) was determined by combining the mGCL and mIPL parameters. Thickness of each layer was compared between the groups, and the layer and sector with the best area under the receiver operating characteristic curve (AUC) were identified. Main Outcome Measures: Comparison of pRNFL, IRL, mRNFL, mGCL, mIPL, mGCC, mGCL-IPL, mINL, mOPL, mONL, PR, and RPE parameters and total retinal thicknesses between groups for the different areas and their corresponding AUCs. Results: Peripapillary RNFL was significantly thinner in the EG group globally and in all 6 sectors assessed (P < 0.0005). For the macular variables, retinal thickness was significantly reduced in the EG group for total retinal thickness, mIRL, mRNFL, mGCL, and mIPL. The 2 best isolated parameters to discriminate between the 2 groups were pRNFL (AUC, 0.956) and mRNFL (AUC, 0.906). When mRNFL, mGCL, and mIPL measurements were combined (mGCC and mGCL plus mIPL), then its diagnostic performance improved (AUC, 0.940 and 0.952, respectively). Conclusions: Macular RNFL, mGCL-IPL, and mGCC measurements showed a high diagnostic capability to discriminate between healthy and EG participants. However, macular intraretinal measurements still have not overcome standard pRNFL parameters.
引用
收藏
页码:1218 / 1228
页数:11
相关论文
共 8 条
  • [1] Re: Pazos et al.: Diagnostic accuracy of Spectralis SDOCT automated macular layers segmentation to discriminate normal from early glaucomatous eyes (Ophthalmology. 2017; 124: 1218-1228)
    Qiu, Kunliang
    Zhang, Mingzhi
    OPHTHALMOLOGY, 2018, 125 (03) : E20 - E21
  • [2] Automated intraretinal segmentation of SD-OCT images in normal and age-related macular degeneration eyes
    de Sisternes, Luis
    Jonna, Gowtham
    Moss, Jason
    Marmor, Michael F.
    Leng, Theodore
    Rubin, Daniel L.
    BIOMEDICAL OPTICS EXPRESS, 2017, 8 (03): : 1926 - 1949
  • [3] Diagnostic ability of inner macular layers to discriminate early glaucomatous eyes using vertical and horizontal B-scan posterior pole protocols
    Bambo, Maria P.
    Cameo, Beatriz
    Hernandez, Ruben
    Fuentemilla, Enrique
    Guerri, Noemi
    Ferrandez, Blanca
    Polo, Vicente
    Larrosa, Jose M.
    Pablo, Luis E.
    Garcia-Martin, Elena
    PLOS ONE, 2018, 13 (06):
  • [4] Evaluation of the new Canon HS-100 SD-OCT: Reproducibility of macular ganglion cell complex (GCC) thickness measurement in normal, hypertensive and glaucomatous eyes
    Rosenberg, R.
    Marill, A. -F.
    Fenolland, J. -R.
    El Chehab, H.
    Delbarre, M.
    Marechal, M.
    Abayi, A. Mouinga
    Giraud, J. -M.
    Renard, J. -P.
    JOURNAL FRANCAIS D OPHTALMOLOGIE, 2015, 38 (09): : 832 - 843
  • [5] Validation of Macular Choroidal Thickness Measurements from Automated SD-OCT Image Segmentation
    Twa, Michael D.
    Schulle, Krystal L.
    Chiu, Stephanie J.
    Farsiu, Sina
    Berntsen, David A.
    OPTOMETRY AND VISION SCIENCE, 2016, 93 (11) : 1387 - 1398
  • [6] Differential Vulnerability of Retinal Layers to Early Age-Related Macular Degeneration: Evidence by SD-OCT Segmentation Analysis
    Savastano, Maria Cristina
    Minnella, Angelo Maria
    Tamburrino, Antonello
    Giovinco, Gaspare
    Ventre, Salvatore
    Falsini, Benedetto
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (01) : 560 - 566
  • [7] Glaucomatous Maculopathy: Thickness Differences on Inner and Outer Macular Layers between Ocular Hypertension and Early Primary Open-Angle Glaucoma Using 8 x 8 Posterior Pole Algorithm of SD-OCT
    Javier Garcia-Medina, Jose
    del-Rio-Vellosillo, Monica
    Palazon-Cabanes, Ana
    Dolores Pinazo-Duran, Maria
    Zanon-Moreno, Vicente
    Paz Villegas-Perez, Maria
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (05)
  • [8] Visual Prognosis of Eyes Recovering From Macular Hole Surgery Through Automated Quantitative Analysis of Spectral-Domain Optical Coherence Tomography (SD-OCT) Scans
    de Sisternes, Luis
    Hu, Julia
    Rubin, Daniel L.
    Leng, Theodore
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (08) : 4631 - 4643