Thermoresponsive Polymer Nanoparticles Based on Viologen Cavitands

被引:18
作者
Sultanova, Elza D. [1 ]
Krasnova, Ekaterina G. [2 ]
Kharlamov, Sergey V. [2 ]
Nasybullina, Gulnaz R. [2 ]
Yanilkin, Vitaly V. [2 ]
Nizameev, Irek R. [2 ]
Kadirov, Marsil K. [2 ]
Mukhitova, Rezeda K. [1 ]
Zakharova, Lucia Y. [2 ]
Ziganshina, Albina Y. [1 ]
Konovalov, Alexander I. [1 ]
机构
[1] Russian Acad Sci, Kazan Sci Ctr, Dept Calixarene Chem, AE Arbuzov Inst Organ & Phys Chem,IOPC, Kazan 420088, Russia
[2] Russian Acad Sci, Kazan Sci Ctr, IOPC, AE Arbuzov Inst Organ & Phys Chem, Kazan 420088, Russia
来源
CHEMPLUSCHEM | 2015年 / 80卷 / 01期
基金
俄罗斯基础研究基金会;
关键词
cavitands; nanoparticles; polymers; self-assembly; viologens; MINIEMULSION POLYMERIZATION; TETRAVIOLOGEN; MICELLES; NANOGELS; SENSORS; BINDING; DESIGN;
D O I
10.1002/cplu.201402221
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, the synthesis of new thermoactive polymer nanoparticles with a hollow and porous structure is reported. The nanoparticles consist of viologen cavitands linked with styrene bridges. The sizes of the nanoparticles and their pores are sensitive to temperature change. The temperature increase results in the swelling of the nanoparticles and in an increase in the permeability of the nanoparticle shell. The nanoparticles are characterized by the data of NMR, IR, and UV spectroscopies, and dynamic and static light scattering (DLS, SLS). The electrochemical behavior of the nanoparticles was investigated with cyclic voltammetry. The nanoparticles can be applied to the temperature-controlled binding and release of substrates as shown by the fluorescent dye rhodamine B. The nanoparticles encapsulate and release rhodamine B in response to the change in temperature from 25 to 40 degrees C.
引用
收藏
页码:217 / 222
页数:6
相关论文
共 50 条
[21]   Biotinylated thermoresponsive core cross-linked nanoparticles via RAFT polymerization and "click" chemistry [J].
Lv, Wenhui ;
Liu, Li ;
Luo, Yan ;
Wang, Xiaojuan ;
Liu, Yuwei .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 356 (01) :16-23
[22]   Thermoresponsive multicolor-emissive materials based on solid lipid nanoparticles [J].
Otaegui, Jaume Ramon ;
Ruiz-Molina, Daniel ;
Latterini, Loredana ;
Hernando, Jordi ;
Roscini, Claudio .
MATERIALS HORIZONS, 2021, 8 (11) :3043-3054
[23]   Polymer-based nanoparticles for the delivery of nucleoside analogues [J].
Hillaireau, Herve ;
Le Doan, Trung ;
Couvreur, Patrick .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2006, 6 (9-10) :2608-2617
[24]   Near-infrared photothermal conversion of stable radicals photoinduced from a viologen-based coordination polymer [J].
Wang, Shanshan ;
Li, Shuning ;
Xiong, Junyu ;
Lin, Zhengguo ;
Wei, Wei ;
Xu, Yanqing .
CHEMICAL COMMUNICATIONS, 2020, 56 (54) :7399-7402
[25]   Thermoresponsive PNIPAM/Silica Nanoparticles by Direct Photopolymerization in Aqueous Media [J].
Zou, Hua ;
Schlaad, Helmut .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2015, 53 (10) :1260-1267
[26]   Capsular Assemblies of Calix[4]resorcinarene-based Cavitands [J].
Yamanaka, Masamichi ;
Kobayashi, Kenji .
ASIAN JOURNAL OF ORGANIC CHEMISTRY, 2013, 2 (04) :276-289
[27]   Bacterial adsorption to thermoresponsive polymer surfaces [J].
D. Cunliffe ;
C.A. Smart ;
J. Tsibouklis ;
S. Young ;
C. Alexander ;
E.N. Vulfson .
Biotechnology Letters, 2000, 22 :141-145
[28]   Thermoresponsive polymer nanocarriers for biomedical applications [J].
Bordat, Alexandre ;
Boissenot, Tanguy ;
Nicolas, Julien ;
Tsapis, Nicolas .
ADVANCED DRUG DELIVERY REVIEWS, 2019, 138 :167-192
[29]   Bacterial adsorption to thermoresponsive polymer surfaces [J].
Cunliffe, D ;
Smart, CA ;
Tsibouklis, J ;
Young, S ;
Alexander, C ;
Vulfson, EN .
BIOTECHNOLOGY LETTERS, 2000, 22 (02) :141-145
[30]   Self-Assembly Strategy for the Preparation of Polymer-Based Nanoparticles for Drug and Gene Delivery [J].
Chen, Si ;
Cheng, Si-Xue ;
Zhuo, Ren-Xi .
MACROMOLECULAR BIOSCIENCE, 2011, 11 (05) :576-589